
	 	

The Business Need for Security

Metamorphic Worms: Can they remain hidden?

 Reethi Kotti

Submitted to: Dr. Themis A. Papageorge

Course: Foundations of Information Assurance

	 	

CONTENTS

I. Worms
A. What are Worms ……………………………………………………....... 1
B. Few Popular Worms ………………………………………………….… 2
C. Propagation of Worms ……………………………………………….…. 3
D. Worm Signatures and Detection Strategies …………………………...... 5

II. Metamorphic Worms

A. Introduction …………………………………………………………….. 6
B. Polymorphic vs. Metamorphic Worms ……………………………….... 6
C. Challenges faced during Detection …………………………………….. 7
D. Detection Strategies ……………………………………………………. 8

III. Result

A. Metamorphic Engines ………………………………………………….. 9
B. Research Answer ……………………………………………………… 14

IV. Conclusion ………………………………………………………………... 15

V. References ………………………………………………………………… 16

	 	

ILLUSTRATIONS

Figure 1 Topological Scanning 5

Figure 2 Random Scanning 5

Figure 3 General Obfuscation 9

Figure 4 Entry Point Obfuscation example 10

Figure 5 Illustration of a fragmented section of code

11

Figure 6 Illustration of the execution flow of a fragmented program 12

Figure 7 Zmist engine decompiling a PE file and integrating codes. 13

1	

I. WORMS

A. What are worms

 Worms can be thought of us as malicious codes that exploit the vulnerabilities of a
system. However there is one feature that makes them unique, it is their ability to
propagate over a network. Though a worm sounds similar to a virus, they vary greatly in
the method they employ to keep themselves alive in a network. Both worms and viruses
propagate from one system to the other; however, a virus needs to attach itself to a file,
data or executable, to be able to move over the network. On the other hand, a worm can
propagate autonomously, i.e., without any assistance of external software. Also worm
nodes might at times communicate with each other or with a central site, but a virus
doesn’t communicate with any external system.

 A worm is generally broken down into five basic components; they are
reconnaissance, attack, communication, command and intelligence components. The
reconnaissance component is responsible for discovering new nodes that can be infected
by the worms known methods. The attack component is what launches an attack on the
discovered vulnerable nodes while the communication component is responsible for the
communication that happens between the compromised nodes or with a central system.
The command component provides the interface, which is required for sending out
commands to the compromised nodes. Finally, the intelligence component is the one that
has all the information that is required to establish communication between the various
compromised nodes. This information can include location of the nodes and their
characteristics.

 To better understand a worm’s propagation strategy explained later in this paper, it
is a prerequisite to understand the different types of worms out there. They are broadly
classified into scan-based and topology-based worms. A scan-based worm is one that
propagates by probing the entire IPv4 space to find vulnerable hosts, while a topology-
based worm relies on the information contained in the victims system to find its next
target. The latter kind is more reliable as the number of guesses made in the former type is
on the higher side.

 While there are numerous papers on worms, most deal with their propagation
techniques or introduce methods for overcoming their disastrous impacts. Few introduce
methods of detecting them just in time to save the network from the otherwise arising
repercussions.

 In this paper, I attempt to delve deeper into a specific kind of worm not researched
widely, known as the metamorphic worm. These worms are insidious, in that they can
morph their behavior or code as they propagate. I intend to better understand these worms
and in the process come up with an answer to the research question, can a metamorphic
worm be made to go into a suspended state as a part of one of its iterations to avoid
detection

2	

B. Few popular worms
In this section, few famous worms will be introduced which are particularly known for the
havoc they wrecked.

1. Morris worm, 1988
Robert Tappan Morris as a part of his research project created this worm, which
escaped and crashed the Internet. The fallout because of this was large enough to
cause the creation of CERT [23].
It propagated by connecting to the Sendmail daemon and issuing the debug
command to enter the debug mode. Once in the debug mode, it could pipe data
through a shell and execute itself using the local C compiler and linker. It also
exploited the finger daemon, creating a buffer overflow to invoke the bin/sh from
where the worm could compile itself.

2. Code Red v1 and v2, 2001
This worm attacked the web servers that were designed to be accessible around the
world so it could bypass typical firewall installations. The attack was against the
Microsoft IIS Web servers; buffer overflow was used to force the system to
execute arbitrary actions based on the attacker. Once on the system, the worm
multiplied forming 100 copies of itself, the first 99 threads began scanning to
discover new hosts while the 100th thread checked the locale of the infected server.
The DoS attack against the site http://www.whitehouse.gov took place once every
month. While propagating, the worm looked for two files on the systems, first is
the file stating that the worm has been there before and the other is the date. This
worm spread faster than the Morris worm as the Internet was booming by 2001.
There were certain vulnerabilities in this worm that caused its demise. The random
number generator employed by the worm used a constant seed value due to which
it always generated the same random numbers. The other factor was that, an
administrator thus fooling the worm could manually create the file it looked for.

3. Nimda, 2001
This worm was first of its kind as it used multiple propagation mechanisms, due to
which it became widespread very quickly [23]. The mechanisms it used included
web server attacks where it performed scanning looking for IIS servers it could
exploit. The other mechanism used was through electronic mails, where it
exploited a known vulnerability in the Microsoft e-mail client. It also spread via
open Windows networking file shares, infecting the file system on the target
computer. The last propagation scheme was by attacking web clients where it
uploaded an exploit to the home page of an infected site.

4. Win32/Fujacks-AU, 2006
This is a worm with a backdoor functionality for the Windows platform [10]. This

	 	 	 3	

worm tries to modify files on local and remote drives with extensions- HTML,
HTM, PHP, ASP, JSP, and ASPX. These files are modified by appending an
iframe which redirects the browser to a remote website from where the worm tries
to copy additional Trojans to the system or update itself. It also copies itself to
mapped network drives with the filename setup.exe, and drops the file autorun.inf,
which runs automatically. It also attempts to delete files with a GHO extension. It
was famous for the panda icon it left behind after infection.

5. Worm: Win32/Vundo.A, 2009
Vundo family is known for displaying pop-ups that are usually related to fake
antivirus software [11]. It spreads by copying itself to mapped network drives. It
may also prevent security features and processes from functioning properly. It
downloads itself onto the system as a DLL file, which then creates a mutex, which
ensures that only one instance of the worm is running at a time. The worm
connects to the servers like 85.12.43.102, pancolp.com and exficale.com from
where it installs updates and downloads other malware. It also disables the
phishing filter in Internet explorer 7 by modifying the registry. This worm, as
suggested by the name, is exclusive for Windows platform.

C. Propagation of worms

 Hosts in the network are in three states during the propagation of worms-
susceptible, infectious and removed. Susceptible is when the host is vulnerable to the
infection, infectious host is one that as been infected and can infect others and a
removed host is dead or has been removed so it cannot be infected.

 Although many techniques have been introduced to detect and prevent worms,
they still pose a significant threat. There are three main reasons behind it; first, the
advancement in technology and networks has caused the propagation of worms to
overtake the speed of human-mediated responses. Secondly, worms can propagate
through the whole network in a matter of few seconds establishing themselves on
every system with a particular vulnerability. This voracious propagation speed is one
of the main reasons why worms are still being coded. Thirdly, worms being produced
today are complicated and more efficient.

In this section we will deal with a variety of propagation techniques employed by
worms.
i. Scan-based techniques- this is the easiest way to propagate hence is widely used.

In this method, a set of IP addresses is scanned to identify vulnerable hosts [2].

• Random Scanning: in this method, a target is randomly selected. Hence the

	 	 	 4	

whole topology is fully connected and each edge has identical infection
probability.

a) Uniform Scanning- in this method, the worm selects its victim without
any preference. Code Red version 1 and 2, and scanner worms employed
this technique.

b) Hit-list Scanning- in this method, hosts on the hit list are first infected,
and then random scanning is employed to identify other vulnerable hosts.
Flash worm employed this technique. Targets on the hit-list are infected
with great speed as time is not wasted on scanning. Hence this technique
speeds up the initial propagation of the worm.

c) Routable Scanning- here, scanning is performed only on the targets in the
routable address space and not the entire IPv4 address space.

• Localized Scanning: instead of selecting targets at random, the closest

addresses are chosen for scanning. This leads to a fully connected topology,
where hosts within the same group can infect each other with the same
infection probability while the infection probability for hosts in other groups is
different.

a) Local Preference Scanning- vulnerable hosts aren’t distributed evenly in
real world. Hence the probability of finding a vulnerable host is higher if
you scan a densely populated area. This is employed here, so an IP
address close to a propagation source with a higher probability is chosen
over one farther away.

b) Local Preference Sequential Scanning- in this method, scanning is done
is an order, it beings at the starting IP address. If a host closer by is
chosen with high probability than a worm farther away, then it’s called
local preferential sequential scanning. In this you’re more likely to
repeat the same propagation sequence, which results in wastage of
infection power.

c) Selective Scanning- this approach is employed if the attacker wants to
attack a particular address area. Hence the worm will scan and infect the
vulnerable hosts only in the target domain.

ii. Topology-based Techniques- In these techniques [2], the worm propagates
using topological neighbors, so it utilizes the information in the victim's
machine. This technique is considered more efficient than scan-based
techniques as the latter makes a lot of guesses to propagate. Human interference
is involved here, for instance, if you consider an email worm, it will become
widespread only when an email user opens the worm email attachment.

	 	 	 5	

Figure	 1.	 Topological	 Scanning	
	
	
	

 Figure	 2.	 Random	 Scanning

Source:	 Both	 the	 illustrations	 are	 adopted	 from	 Yini	 Wang,	 Sheng	 Wen	 and	 Yang	 Xiang:	 	
“Modeling	 the	 Propagation	 of	 Worms	 in	 Networks:	 A	 survey”.	 IEEE	 Communications	 Surveys	 and	
Tutorials	 16,	 no.2,	 2014.	
	

D. Worm signatures and detection Strategies

The easiest way to detect worms is by understanding its characteristics. All worms have
at least few overlapping behavior patterns, like an increase in the network traffic.

	 	 	 6	

Hence in this section, I introduce three detection strategies- traffic analysis, signature
based detection and using honeypots and dark network monitors.

• Traffic analysis: We can detect a worm by performing traffic analysis, that is, by

observing three characteristics specific to a worm-infected network. The first
would be to analyze the volume of traffic on the network; this increases as more
nodes in the network get infected.
The next way is to monitor the type of scans happening on the network. Active
infected hosts perform a number of scans to identify vulnerable systems. These
scans can be tracked using measurement and monitoring tools, which can lead us
to the infected hosts.
Every host on the network has well-defined characteristics, so deviations in these
characteristics can also help detect compromised hosts.

• HoneyPots and Dark (Black Hole) Network Monitors: Here you set up
stations that will monitor worm activity passively. So we use honeynets and dark
network monitors that probe and log whatever they see [4].
A honeynet is a network of honeypots, which lure the attackers in by appearing
vulnerable. While dark network monitors watch unused network segments for
malicious traffic. These can be local or global unused networks.
Honeypots provide access to a small data set while the dark network monitors will
provide data generated from a large network space. Together these two tools can
be used for identifying worms.

• Signature-based Detection: The underlying concept used here is pattern matching
which employs a dictionary containing known bad signatures [24]. Three main
types of signature analysis are used; first being network payload signatures where
packet contents are compared. Next is logfile analysis, where you use application
and system logs to perform the analysis. The last method uses file signatures, i.e.,
file payloads of worms and their executables.

II. METAMORPHIC WORMS

A. Introduction

 A metamorphic worm is a worm that can reprogram itself. With each infection, it
rewrites its code, making it appear different, but the main functionality of the worm
doesn’t change. This change of code is done using a metamorphic engine. This ability
to morph itself makes detecting these worms harder.

 Translating the original code into a temporary representation and then editing this,
rewriting itself back to normal code is often performed to attain the morphing effect.

	 	 	 7	

This characteristic gives metamorphic worms an edge, which is, they can remain
undetectable with respect to static analysis. Therefore there is a good chance that the
number of metamorphic worm attacks may keep increasing in the near future.

 While a metamorphic virus can afford to have its metamorphic engine separated
from the main virus body, like the NGVCK virus; a metamorphic worm would most
likely have to carry its own metamorphic engine as it propagates across the network,
unlike a virus. This need to carry its engine provides for complications as the morphing
engine itself can act as a signature. Hence the metamorphic worm must morph its own
engine every time it morphs its code. This imposes restrictions on the structure of the
morphing engine.

B. Polymorphic worms vs. Metamorphic worms

 Polymorphic worms and metamorphic worms are used synonymously but they
vary due to their respective unique engines. A polymorphic engine can transform a
program into a version consisting of different code but having the same functionality.
Encryption is generally employed here; encrypting the payload with different keys can
generate many worm variations. A decryption module has to be prepended before the
payload [7].

 A metamorphic engine aims to modify the malicious code itself. This can be done
via renaming registers, transposing code blocks, and through instruction
transformation. Here, actual transformations are performed on the code by the engine,
for example [7],

B9 00 10 00 00 mov ecx, 1000h
Is transformed to,
B9 10 B2 00 3C mov ecx, 3C00B210h
81 C1 F0 5D FF C3 add ecx, 0C3FF5DF0h; ecx = 1000h

C. Challenges faced during detection

 Most of the techniques employed to detect worms assume that the worm’s
behavior does not vary or remains constant. This assumption was made as most of the
earlier worms followed a fixed attack pattern. They would begin by scanning for
vulnerable hosts, upon finding one; they would propagate to it and compromise the
system. Then use that node to repeat the same pattern again.

 The process a general worm uses to compromise a system also remains the same.
Hence if the same attack is spotted on multiple systems, it can be concluded that the
same worm has infected these systems. Hence by finding ways to monitor the pre-
established pattern, we can identify a worm-like activity. By paying closer attention to
the victims, we can figure out if all the victims were compromised by the same worm-

	 	 	 8	

same vulnerability, same method employed to exploit the discovered vulnerability are
indicators that the attack was by the same worm.

 But by the advent of polymorphic and metamorphic worms, these techniques have
proven ineffective. This is primarily because these worms keep altering their malicious
code; hence they don’t possess a particular signature that can be tracked; so the
deduction that the same worm has compromised all the affected victims cannot be
made by conventional mechanisms. This would give the worm enough time to further
spread through the network making it harder to control them.

D. Detection Strategies

There are a number of papers that propose novel detection strategies for metamorphic
and also polymorphic worms. But none have yet been established as standards. A few
promising detection strategies found, will be elaborated in this section.

a. Detection using Hidden Markov Model: In this detection strategy, HMM is

employed to identify metamorphic worms [22], [24]. The basic objective here is
to train an HMM using opcodes extracted from worms belonging to a particular
family. This trained HMM will then represent the statistical properties of that
worm family. So it can be used to determine how ‘close’ a file is to the worm
family that the HMM represents.
A lot of research has been done on how to avoid detection using this model, and it
has been found that by inserting dead code into the malicious code, making the
file look closer to a benign file, a worm can avoid detection by this model.
However this will work only when the amount of dead code added is more than
2.5 times the original malicious code size.

b. Double honeypot system: In this technique [8], two honeypots are employed;
one being inbound while the other is outbound. The inbound system is configured
to not make any connections to other systems. When a worm attacks the inbound
system, it will be configured to scan other systems by the worm code, this will
prove that the system has been compromised. This traffic will be directed to the
outbound honeypot that will then analyze the attack pattern and worm’s malicious
code. A gate translator is employed on the router between the Internet and the
network that will direct unwanted traffic to the inbound honeypot. This model can
detect metamorphic worms in that it incorporates both signature and anomaly
based techniques. Byte sequences can be captured using this technique, which
will then be employed to come up with worm signatures.
When code transposition is done, a lot of jump instructions are added to the code,
these can be removed using executable-analysis techniques. Swapping of registers
causes only minor changes in the code sequence.

	 	 	 9	

III. RESULT

The research question posed was regarding metamorphic worm’s ability to avoid
detection- can a metamorphic worm suspend itself into an inactive state to avoid
detection.
 After considerable amount of research, I identified that the Code Red worm was
known to remain dormant on an infected system for approximately a month before
attacking again. But it has to be noted that Code Red was a worm without the presence
of a morphing engine.

 A deeper understanding of the functionality of a morphing engine and the
techniques employed by it is thus required to be able to answer the research question.
The summary of the data collected on morphing engines is explained in the coming
sub-section and an answer for the research question is presented in the sub-section
following that.

A. Morphing engines

As already noted, a metamorphic worm is capable of rewriting its code while
maintaining the same functionality with each infection. This is achieved via a
morphing engine that uses various methods to represent the same code in a number of
ways. A short description of few such popular techniques will be discussed here.

• General Obfuscation: A very common technique employed by both
polymorphic and metamorphic worms to hide from antivirus scanners. The
methods employed include garbage code insertion, registry modification, code
transformation etc. Here you try to manipulate the ordering of the code, replace
a high-level instruction with a combination of low-level instructions, change
method names in a program or try to modify the aggregation of control data. In
garbage insertion, code with no effect like NOP functions or other complex
codes are inserted to manipulate the byte sequence of the viral code. Fig. 3
briefly illustrates the mechanism of general obfuscation

Figure	 3.	 General	 Obfuscation	

	

	 	 	 10	

Source:	 The	 above	 illustration	 has	 been	 adopted	 from	 Yuichiro	 Kanzaki,	 Akito	 Monden,	
Masahide	 Nakamura	 and	 Ken-‐ichi	 Matsumoto:	 “Exploiting	 Self-‐Modification	 Mechanism	 for	
Program	 Protection”,	 27th	 Annual	 International	 Computer	 Software	 and	 Applications	
Conference,	 IEEE	 2003.	

• Entry Point Obfuscation (EPO): In known heuristics, the antivirus programs

or detection systems search for modified entry points of a target executable, as
for a worm to acquire control, it needs to place itself in the line of execution.
Under EPO, the worm, instead of modifying the entry point, places itself in the
middle of the executable and using jump and call functions receives control
from and transfers it back to the target executable. In Fig. 4 the entry point
address is 401000, the malicious code is obfuscated using complex
transformation EDI instructions. The metamorphic engine inserts these
instructions such that no effect is seen on real file execution and since they are
inserted after a PUSH function, we assume that the registers will be modified
later on. Hence it’s considerably difficult to capture these worms using a single
signature. 	

	
• Host Code Mutation: Here the morphing engine transforms the code. In order

to perform that, the engine first needs to implement a disassembly, which will
parse the input code, and then the engine will transform this code to produce
new code that will retain its functionality but look different. The engine apart
from mutating its own code also modifies the code of the host.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Figure	 4.	 Entry	 Point	 Obfuscation	 example	

	

	 	 	 11	

Source:	 The	 above	 illustration	 has	 been	 adopted	 from	 Xufang	 Li,	 Peter	 K.K.	 Loh,	 Freddy	 Tan:	
“Mechanisms	 of	 Polymorphic	 and	 Metamorphic	 Viruses”,	 2011	 European	 Intelligence	 and	
Security	 Informatics	 Conference,	 IEEE	 2011.	

• Program Fragmentation: This technique [15] was first presented in a paper;
in this technique, the metamorphic engine takes segments of code from various
portions of the program and scatters them throughout the program. By
removing segments of code, the spatial locality of the program is disturbed thus
making the location of malicious code difficult. This is illustrated in Fig. 5.
These sections of code are copied to random locations and a part of the
memory at the original location is used up to place a procedure call or jump to
the new location while the remainder of the memory is written over with
random instructions. When the program executes and reaches the original
location, the jump instruction gets executed which transfers the control to the
new location, after execution of the instructions, the control returns back to the
instruction following the original location thus skipping all the inserted random
instructions. Fig. 6 illustrates this concept. A construct similar to a lookup table
or function-manager is required to manage all the fragments; rather than
directly jumping to the fragment, the program calls the function-manager
which then transfers the control to the appropriate location. This technique is
similar to subroutine reordering but has much smaller granularity as smaller
segments of code can be placed into fragments, rather than entire subroutines.

	

Figure	 5.	 Illustration	 of	 a	 fragmented	 section	 of	 code	

• Code Transposition: This method was used by Win32/Vundo worm [7],
which was explained in earlier sections. Here the execution flow is altered at
the instruction or module level using conditional and unconditional jumps.

	 	 	 12	

Instructions whose functionality is essentially to do nothing are generated by
the morphing engine and are inserted in gap places of the jump flows. The only
thing that these instructions accomplish is modifying the original code flow.

For example,

Push ecx; Entry point
Jmp instruction 1
Instruction 1; Garbage code like NOP
Jmp instruction 2
Instruction 2; Garbage code
Entropy data; Packed or compressed or encrypted data

	

Figure	 6.	 Illustration	 of	 the	 execution	 flow	 of	 a	 fragmented	 program	

Source:	 The	 above	 two	 illustrations	 have	 been	 adopted	 from	 Bobby	 D.	 Birrer,	 Richard	 A.	 Raines,	
Rusty	 O.	 Baldwin,	 Barry	 E.	 Mullins,	 Robert	 W.	 Bennington:	 “Program	 Fragmentation	 as	 a	
Metamorphic	 Software	 Protection”,	 Third	 International	 Symposium	 of	 information	 Assurance	 and	
Security,	 IEEE	 Computer	 Society,	 2007.	

• Anti – Debugging: The worm employs these techniques if it comes under the

control of a debugger. Anti – Debugging is used to slow down the reverse
engineering process by malicious codes, packers etc. In case of Win32.Evol, if
the morphing engine finds a breakpoint on debugging, it would jump to a
routine that would result in a crash.

For instance, the following routine maybe employed which will eventually

	 	 	 13	

result in a crash. Win32.Evol, a true metamorphic engine-powered malware,
used this routine [7].

; START OF FUNCTION CHUNK
AntiDebug:
cmp byte pt [ebx+7], 0BFh; checks for kernel mode
jnz short ret_AntiDebug; jumps if not zero

mov ecx, 1000h; counter = 1000h
mov edi, 40000000h;
or edi 80000000h;
add edi, ecx; edi = C0001000h
rep stosd; bytes copied to edi
ret_AntiDebug:
retn; return
; END OF FUNCTION CHUNK; this will result in a crash since this routine wasn’t
called

• Code Integration: This technique was first seen in Win32/Zmist, written by
researcher Peter Ferrie and Peter Szor. Zmist’s engine first decompiles a
Portable executable’s code and then moves few code blocks out of the way and
inserts itself there, then it rebuilds the code for execution. The methodology
followed in code integration is shown in the Fig. 7.

	

	
Figure	 7.	 Zmist	 engine	 decompiling	 a	 PE	 file	 and	 integrating	 codes.	

	 	 	 14	

Source:	 The	 above	 two	 illustrations	 have	 been	 adopted	 from	 Xufang	 Li,	 Peter	 K.K.	 Loh,	 Freddy	
Tan:	 “Mechanisms	 of	 Polymorphic	 and	 Metamorphic	 Viruses”,	 2011	 European	 Intelligence	
and	 Security	 Informatics	 Conference,	 IEEE	 2011.	
	

B. Research Answer

 It has already been established that worms being suspended into an inactive state is
possible. Worms like Code Red version 1 and 2, and Code Red II have accomplished
this in the early 2000’s.
A sample piece of code from Code Red worm [18],

push 6DDD00h; this is for 2 hours
call dword ptr[ebp-160h]; sleep
;
; this sleeps for 2 hours

As seen, this causes the worm to sleep for two hours before again continuing its
function. By altering the value pushed, the sleep patterns can be changed. To illustrate
this better, I now present another piece of code that causes the worm to sleep for 4.66
hours approximately.

push 1000000h;
; sleeps for around 4.66 hours

 If a worm can be coded such that it sleeps randomly for irregular intervals time,
there is a good chance that a signature for this worm would be difficult to generate,
thus making the usage of signature-based detection strategies ineffective. For such a
worm to be effective, a random number generator using a dynamic seed is critical. The
random number generator should be used for determining the amount of time a worm
would be suspended.

 Since the morphing engine would be using techniques like garbage code insertion,
code integration etc., the execution time of the worm on each system it infects would
most probably be varied. Assuming that in at least four or five machines for every ten
systems that a worm infects, the total execution time required is different, we can
establish that the sleeping patterns will also vary. Also infected systems may differ in
their configurations thus leading to varied execution times, thus complicating the
construction of a signature for the worm.

 But the catch here is that though a worm would be sleeping for irregular intervals
of time, it is still sleeping for the same exact number of times. How this would affect
the signature generation of the worm and if the number of times a worm sleeps can be
modified with each infection by possibly employing a counter or a random generator is
beyond the scope of this paper and hence is left for further advanced research.

	 	 	 15	

IV. CONCLUSION

 Worms are one kind of malware that are not yet known to cause catastrophic
results. This is probably because most of the worms generated so far have focused more
on propagation rather than destroying or modifying data on the system they infect. This
doesn’t mean that they are not as harmful as viruses; it rather means that worms are yet in
their early stages and have not been exploited by malware writers to their full potential.
Hence there is a possibility that worms may soon become one of the most dreaded
malware.

 While it has been stated that worms are yet to be exploited, there have been
improvements. For instance, metamorphic worms are a relatively new inclusion into the
Worm family. Hence not a lot of study has been performed on this topic, which makes it a
very fertile ground for research.

 Metamorphic worms make detection harder by modifying themselves with each
infection. The functionality of morphing engines has been presented in the earlier sections
of this paper to better illustrate the uniqueness of metamorphic worms. Since metamorphic
worms are still in their budding stages, the true capacity of these worms cannot be
predicted.

 In this paper, I tried to figure out the capability of a worm to suspend itself into a
sleep state making it harder for the detection systems. After performing considerable
amount of research, I came to a conclusion that suspension of the worm is very much
possible and this ability can be included into the code that a morphing engine will modify.
I also presented the likelihood of a worm that has the capability to sleep in combination
with morphing its code and also offered a possibility for further research, which I intend to
carry out in the future.

	 	 	 16	

REFERENCES

[1] Nazario, Jose. 2004. Defense and Detection Strategies against: Internet Worms.
London: Artech House Boston.

[2] Wang, Yini, Wen, Sheng and Xiang, Yang. 2014. “Modeling the Propagation of
Worms in Networks: A survey”. IEEE Communications Surveys and Tutorials 16, no.2.

[3] Fan, Xiang and Xiang, Yang. 2010. “Modeling the Propagation of Peer-to-Peer Worms
under Quarantine”. IEEE/IFIP Network Operations and Management Symposium –
NOMS 2010: Short Papers.

[4] Tang, Yong and Chen, Shigang. 2005. “Defending Against Internet Worms: A
Signature-Based Approach”. 24th Annual Joint Conference of IEEE Computer and
Communications Societies, IEEE 2.

[5] Lakhotia, Arun, Kapoor, Aditya and Uday, Eric. January, 2005. “Are Metamorphic
Viruses Really Invincible”.Virus Bulletin.

[6] Gebhart, Glenn. 2004. “Worm Propagation and Countermeasures”. SANS Institute,
2004.

[7] Li, Xufang, Loh, Peter and Tan, Freddy. 2011. “Mechanisms of Polymorphic and
Metamorphic Viruses”. IEEE Intelligence and Security Informatics Conference, 2011
European.

[8] Mohammed M.Z.E., Mohssen, Chan, Anthony, Ventura Neco, Hashim, Mohsim and
Amin, Izzeldin. 2009. “Polymorphic Worm Detection Using Double-Honeynet”. IEEE.

[9] Maurer, Jon. 2003. “Internet Worms: Walking on Unstable Ground”. Sans Institute
2003.

[10] “W32/Fujacks-AU – Viruses and Spyware”.
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-
spyware/W32~Fujacks-AU/detailed-analysis.aspx. (accessed November 9, 2014).

[11] “Worm: Win32/Vundo.A”.	
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Worm%
3aWin32%2fVundo.A (accessed November 9, 2014).

[12] “IDA – evol.idb”.
http://www.openrce.org/articles/files/evol_disasm.html. (accessed November 10, 2014).

[13] “The Viral Darwinism of W32.Evol- Collaborative RCE Knowledge Library”.
http://www.threatexpert.com/report.aspx?md5=2d2ab339bc44c6292108cb2594ae01ff.
(accessed November 10, 2014).

	 	 	 17	

[14] “ThreatExpert Report: W32.Fujacks.E, Worm.Win32.Fujacks.cv”.
http://www.threatexpert.com/report.aspx?md5=2d2ab339bc44c6292108cb2594ae01ff.
(accessed November 11, 2014).

[15] Birrer, Bobby, Raines, Richard, Baldwin O., Rusty Mullins, Barry and Bennington,
Robert. 2007. “Program Fragmentation as a Metamorphic Software Protection”. Third
International Symposium on Information Assurance and Security.

[16] Dolak, John. 2001. “The Code Red Worm”. Information Security Reading Room
SANS 2001.

[17] “CAIDA Analysis of Code-Red”
http://www.caida.org/research/security/code-red/. (accessed November 14, 2014)

[18] “Code-Red-Worm [source code]”
http://indianrenegade.blogspot.com/2007/02/code-red-worm-source-code.html. (accessed
November 14, 2014)

[19] Kanzaki, Yuichiro, Monden, Akito, Nakamura, Masahide and Matsumoto, Ken-ichi.
2003. “Exploiting Self-Modification Mechanism for Program Protection”, 27th Annual
International Computer Software and Applications Conference, IEEE 2003.

[20] Wong, Wing and Stamp, Mark. 2006. “Hunting for metamorphic engines”. Springer-
Verlag France 2006.

[21] “How to generate random numbers in ASM - Programming and Coding - Tuts 4You”
https://forum.tuts4you.com/topic/26304-how-to-generate-random-numbers-in-asm/
(accessed November 15, 2014)

[22] Attaluri, Srilatha, Mcghee, Scott and Stamp, Mark. 2009. “Profile hidden Markov
models and metamorphic virus detection”, Journal in Computer Virology 5, no.2 (May) :
151-169.

[23] Syed, Farhan. “Understanding worms, their behavior and containing them”, Project
Report, University of Washington, St. Louis.
Available: http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms.pdf

[24] Madenur Sridhara, Sudarshan. 2012. “Metamorphic Worm that carries its own
Morphing Engine”. Masters Thesis and Graduate Research, San Jose State University.

