FLoP-1.5.1

Fast Logging Project for Snort

Dr. Dirk Geschke
Dirk@geschke-online.de

FLoP - 1.5.1: Fast Logging Project for Snort
by Dr. Dirk Geschke

Published February 2006
Copyright © 2006 Dirk Geschke

Table of Contents

Y 011 =T TSSOSO %
IO [110 T [ox 1o o STV PP 1
2. Programs Of the PrOJECL.......cuciie ettt st et re st be e e e e e enenns 2
3. THE SNOIE PALCK.....eceieiiec bt n et 3
3.1, StAtiStICS WIth SNOKL.....ccuicece et ne et ae e eneenens 3

4. CoNfIGUIALION OF FLOP ...ttt 6
4.1. Some notes on the configuration OPLIONS..........ccveirrireireie s 6

5. The programsSOCKSErV and SEIVSOCK..........cuiiiiiiieeee e 9
5.1. The detailsS OF0CKSEIV.......cciiiiiieieeee ettt st 9
5.1 1. OPHIONS....etiiiititereete ettt ettt ettt b et b et b et a st e bt e b e b e bt r e b e 10

5.1.2. SIigNalNandling..........coreirieinirieinenee et 11

5.1.3. Some additional NOLES......cccooiieie e e 12

5.2. The detailS OFEIVSOCKccoiiiiiieee et 13
LI T @ o T L= USSP 14

5.2.2. The configuration file GervsoCK...........coiiiiiieer e 16

5.2.3. SIgNalN@ndling........cccooiiiiiireeere e e e 20

5.2.4. Some additioNal NOLES........cciiiiieirreeree e e 20

6. The programs alert and ArOPccceeieieeiese et esae e e sresseentesreennennas 23
6.1. The details GAIEIT..........coo i 23

LI N g 1= N0 (= = 1 RS0 (0] o S 23

6.3. The command line options afert anddropccccevvvviirreiecesce e 24

6.4. The configuration file faalert anddropc.ccoceveeeeeriie s 25

LTSI ST [T= L= Vo | T T 27

7. The Program gELPACKEL........cuiviereeeeee st e et e et sa e e ene st e besr e e e e eseeseeneseesseneeneens 29
7.1. The extension of the database SCheEME........cccooec v 29

7.2. The command line optioNs QEIPACKET.........ccovirierreie e 30

7.3. The configuration file aetPaCKeL...........ccviiriinre e 31

7.4. Some final NOtES AUBLPACKET........ccoiiiiieci e 31

8. The program fpg, af alSepOSItive GENETALON ..o 33
8.1. The details of thEIG PrOGIraM........ccovi it 33

8.2. The command line OPtioNS fIHTcoveireiiie e 34

8.3. Some final remarks 0N the Progrfiii..........cccoeerieineiine e 35

9. Summary of the tools and @ fiNAl SUNVEY...........coiiiiii e e 37

List of Examples

3-1. A simple perl script to feed an RRDtool database with a time step of 30 seconds. Here we only
account for the receive rate but it is easily extended to the other.data..............cccccvvvrverenneee 4

Abstract

The design ofsnort (http://www.snort.org/) requires a sequential work in the preprocessors, detection
engine and output plugins for each network packet generating an alert. To enhance the detection
capabilities of snort it would be an advantage to decouple the output plugins from the snort process. This
is one aim of thé-LoP project.

The second target regards the collection of alerts generated by several sensorsamt@hserver On
this server all alerts will be inserted into odatabasdor further processing, analyzing and/or archiving.
The processes should buffer alerts until they are inserted idatabase

Chapter 1. Introduction

The network intrusion detection systemort (http://www.snort.org/) watches for suspicious network

traffic. If such a packet is detected it is first processed by the preprocessors. Here, among other things, the
packets are reassembled on IP or TCP basis or are normalized like http traffic. After this stage the packet
is either discarded (for the snort process) or forwarded to the detection engine. The detection engine
applies several rule sets on this packet. If one rule matches an alert is generated and all output plugins are
called sequentially to process this packet and the related informations like which rule generated the alert.

After the whole chain is worked trough the next network packet can be analyzed. All packets arrived in
between have to be buffered either by the kernel otitleap. If there are too many network packets
and/or snort takes too long for processing the individual packets (or one output plugin blocks) it is likely
that some packets are dropped.

So on a heavy network attack a lot of packets may be dropped due to the fact that snort is working on the
output processing. On the other hand if there is no traffic snort will be idle.

One solution is to decouple the output plugins from snort. Why should snort bother about the various
formats of alerts or how to insert the packets in a database? It would be of great advantage to restrict
short to only detect alerts.

This is wherd~=LoP starts. It decouples the output plugins from snort, gathers all alerts and sends them to
a central server. At the server they where collected and inserted into a database for further processing.
Additionally all alerts are buffered until they are processed (or where explicitly dropped by a
confiugartion parameter if too many alerts are buffered).

Chapter 2. Programs of the project

The project actually consists of six programs and one patch for snort:

The patch and programs of FLoP

snort-2.x.x_patch

This patch adds an output plugin to write the alerts via an unix domain socket

sockserv
This program generates the unix domain socket to which snort can write the alerts. The received
alerts are buffered and transmitted to a central server rursgingock

servsock

On thecentral serverall alerts from all remote sensors are collected and writterdatabase

Additionally alerts with high priority can be written to an unix domain socket where another

program receives these alerts and send them via email to a list of predefined recipients.
alert

Alerts received via an unix domain socket are collected and send to a list of recipients.

drop

If too many alerts are buffered a memory shortage can arise. To avoid this a low and high water
mark can be set. If more than high water alerts are in the buffer as many alerts are written to an unix
domain socket until the low water mark is reached. This program collects these alerts and sends
them via email to a list of recipients or prints themstdoutif sending of an email fails.

getpacket

There exists a possibility to store additonal information about the captured network packets in the
database. If these informations are available then this program can relpa#gbfile consisting of
the original captured network packet. This file can be used with programs like tcpdump or ethereal.

fpg

This False-Positive-Generator takesrertconfiguration file and creates for nearly each rule a
network packet able to raise an alert. This program is useful for performance and stress tests of the
whole chain starting at snort and ending at the database.

The next sections explain all these programs, how they work and how they can be configured.

Notes

1. Allused unix domain sockets are of tydatagramto avoid blocking if one process creating the
socket is not available.

Chapter 3. The snort patch

This patch is needed to activate an output plugin which enables snort to write all alert information and
the suspicious network packet to an unix datagram socket. To apply the patch you need only to change to
the snort source directory and use the command:

snort-2.x.x$ patch -pl < /path/to/FLoP-1.5.0/patches/snort-2.x.x_patch
After configure andmake thesnort program understands a new option in ghert.conf file:
output alert_unixsock_db: /tmp/snort[, all|log|alert]

The parameter to this output plugin describes where the unix domain socket should be found. Since we
use unix domain sockets of typlatagramit is not required that this socket exists. If there is no such
socket, snort will simply write a warning message and continue to work. If the socket gets created in
between, snort will use it. So snort is never blocked by this output plugin (except the reading process is
explicit blocking).

Since snort-2.1.3 there exists also the possibility to write alternativelipghepackets to the socket or
both. Ifall is mentioned then only one packet is written to the socket if they are in both output chains.

Further there is the optiofy added to snort to avoid writing any alerts to the file system. (Before
snort-2.3 this option wag) but now-Q is used for the snort-inline part.)

Thelog facility is necessary if you want to store tagged packets or packetdyri@mcrule in the
database. Take also a look at the proggetpacket

3.1. Statistics with snort

The patch additionally extends snort byxaoption (before snort-2.4 this option-i). This enables

snort to write statistical inforamtion about the actual status to the unix domain socpi&tats

These informations include the number of received and dropped packets, how many alerts where
generated and which protocols where involved since the last time. The time intervall is the parameter
after this option.

With the command

snort -x 30

Chapter 3. The snort patch

the statistics are written every 30 seconds to the special unix datagram socket. Again, if this socket is not
available, nothing will be written but snort will still work.

This information can be used in conjunction with RBDTool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) to create some nice pictures like:

Snort statistics

200 1

200 +

15 40 15, B0
B received ackets W alerts B TCF O UDP O ICHP

TR L]

el

SFY9TIAn TAnNl

Statistics picture from snort generated wRRDTool

Example 3-1. A simple perl script to feed arRRDtool database with a time step of 30 seconds. Here
we only account for the receive rate but it is easily extended to the other data.

#!/usr/bin/perl
use 10::Socket;
use |O::Handle;
use Socket;
use RRDs;

$UXSOCKADDR="/tmp/stats";

unlink($UXSOCKADDRY);

$sock = 10::Socket::UNIX->new(Local => $UXSOCKADDR, Type => SOCK_DGRAM) ad
or die "Can't bind to Unix Socket: $\n";
$sock->setsockopt(SOL_SOCKET, SO_RCVBUF, 65440); O

print "Ready to accept conntections\n";
$RRDrecv="recv.RRD";

if (! -e $RRDrecv) O
{
$CreateRRD=true;
}
while (1) {
$len=44;
$sock->recv($input,$len);
$TotalEvents++;

O oo o g

Chapter 3. The snort patch

@fields=unpack(* L L L L L L L L L L L"$input);
print "\n";

if ($CreateRRD eq true)

{

RRDs::create ("$RRDrecv", "--start", "$fields[0]", "--step”, "30", O
"DS:Statistics:GAUGE:61:0:U", "RRA:AVERAGE:0.5:1:100",
"RRA:AVERAGE:0.5:10:24", "RRA:AVERAGE:0.5:20:144");

$CreateRRD=false;

}
RRDs::update ($RRDrecv, "$fields[0]:$fields[1]"); O

Open an unix domain socket of typatagramto be able to receive data from snort.
Increase the receive buffer of the socket.

Test if a RRD database exist, if not we have to create one.

There is no RRD database, so we create one here.

Update the RRD database.

Chapter 4. Configuration of FLoP

After the snort sources are patched you have tacanfigure in the snort source directory. This will
create the fileonfig.h which is needed to compile FLoP. Both,snort and FLoP should use the same
types of variables.

After this is done change to the FLoP directory and call lvergfigure. You have to mention the path to
the snort sources with the directivevith-snort= /path/to/snortand at least one database: Either
Mysql (--with-mysgl= /path/to/mysqglor PostgreSQL-{with-postgres= /path/to/postgresyl

Further you have to decide if the features and progrdrop (--enable-drop , this is now default),
alert (--enable-alert , this is now default)getpacket(--enable-getpacket) andfpg
(--enable-fpg) should be compiled. To builfpg you must have libnet version 1.1 or newer.

4.1. Some notes on the configuration options

Whereas the path to the snort sources is required some others are optional and some are recommended.

The configure options in detalil

--prefix= DIR

Gives the prefix to the installed binary, manual pages, documentation files and configuration files.
These are stalled inIR/bin, DIR/man,DIR/doc andDIR/conf.

--with-snort= DIR

This option is requiredDIR should point to the configured snort sources. These are required to
build the FLoP package. At least we newmtlfig.h of the snort sources. Additionally there is a
little test to see if the patch is applied.

--with-mysql= DIR

This option activates the support for thySQLdatabaseDIR should point to théVlySQLdirectory
where the header and library files can be found. First try is taiabin/mysql_configto get the
compiler settings and flags.

--with-postgres= DIR

This option activates the support for tRestgreSQldatabaseDIR should point to thé?ostgeSQL
directory where the header and library files can be found. First try is tOIRfbin/pg_configto get

the compiler settings and flags. Note: You can activate both databases. You have to decide within
servsock.conf which one should be used.

Chapter 4. Configuration of FLoP

--with-libbind

This enables the use of libbind during the link process. Since the programs can use the library
functionsgetipnodebyname() andgetipnodebyaddr() which are not part of every operating
system we can use this library for these functions. If this option is not activated then the functions
gethostbyname() andgethostbyaddr() are used instead.

--enable-drop

This enables the build of the progradrop and activates the interfacessockservandservsock
Note: You have still to activate this feature via the command line options or the configuration file.
So it is save to enable this feature and therefore it is activated by default.

--enable-alert

This enables the build of the progratert and activates the interfacessockservandservsock
Note: You still have to activate this feature via the command line options or the configuration file.
So itis save to enable this feature and therefore it is enabled by default.

--enable-getpacket

This enables the build of the progragatpacketwhich is able to rebuild a file with the network
packet inpcapformat from the database. Note: You have to extend the database scheme to use this
feature and have to adviservsockto store the additional needed information in the database.

If you want to usdibpcap to build the pcap file from the database you have to use the option
--with-libpcap

--enable-fpg

This enables the build of the progrdpyg. To compile this program you need the libnet library
version 1.1 or newer. Since the API of libnet seems to change quiet frequently it is not unlekely that
it will not compile clean. Therefore the option to compile this program is disabled by default.

On some systems the database library and header files are already part of the operating system. There it
can happen that for example the mysql header files are not foupatirto/mysgl/include/ . Here

you may find them irusr/include/mysq| where the compiler will not search for this headers by

default. Thererfore it may be useful to set tblePFLAGI0gether with theconfigure command:

CPPFLAGS=-1/ust/include/mysqgl ./configure --with-mysql=/usr ...

Additionally the optionsCFLAGSfor compiler flags andDFLAGSfor linker options may be useful.

NOTE: If mysql_configor is used to get the compiler settings and flags you should not need to adjust
these FLAGS.

Chapter 4. Configuration of FLoP

For further information read the filNSTALL and the variouREADMHiles of the distribution.

Chapter 5. The programs sockserv and
servsock

These two programs are very similar and work with two parallel threads. One thread receives the alerts
and the other processes these data.

COMMoN Memory

Y

Thread 1 Thread 2

The principal of thesockservservsockprocess.

The first thread of the prograsocksent receives alerts froranort and stores them in a buffer in

memory. The second thread takes these alerts and forwards th@i@RitP to theservsocK program.

This program consists of a master program waiting for connectionsg$omikservprocesses of remote
sensors. For each connection one process is forked off. Each of these processes consist of two threads.
One thread simply receives the incoming alerts, the second stores them to the database.

5.1. The details of sockserv

This program provides an unix domain socketgoort. One thread simply receives alerts via this socket
and stores them in memory, see pictasoegkservservsockprocess.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. The
output plugins fronsnort are reduced to a simple write statement on an unix domain socket. If more
alerts are generated thaackservcan send to theentral serveithe alerts are buffered in memory until

the attack flood decreases.

To reduce the problem on memory shortage due to an high attack flood, the maximum number of alerts
in the buffer can be limited. This is done via two parameters| thevater andHighwater marks. If
more alerts than thdighWwater mark are buffered in memory as many alerts are dropped until the

Chapter 5. The programsockservandservsock

Lowwater mark is reached. All dropped alerts are written to an unix domain socket. The prdgsam
is able to create such a socket, receive these alerts and send them via email to a list of recipients.

If either sockservcan not connect teervsockon startup or the connection is closed during runtime the
program tries to reopen the connection after a short delay for several times.

All output can be redirected ®yslog using the facilitytOCALOand levelINFO. A daemon modes also
supported. Finally statistics could be printed on a periodical basis or once by sending a SIGUSR1 to the
sockservprocess.

5.1.1. Options

There are several options available:

sockserv [-bhigv] [-A delay] [-D dropsocket] [-H Highwater] [-I interface]
[-L Lowwater] [-m mode] [-M maxtry] [-N sensorname] [-p port]
[-P pidfle] [-s snortsocket] [-S server] [-V arealevel] [-w dir] [-W waittime]

The sockserv options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these
values betweedelay seconds is printed in brackets. See also opfion

Start the process in the backgrouddemon modeThis automatically activates optieh .

-D dropsocket

If there are more thaHighwater alerts buffered then the newest alerts are dropped to
dropsocket until theLowwater mark is reached.

Print a help message and exit.

-H HighWater
Sets theHighwater mark, see optiorD . The default value is 10000.

-l interface

Interface on which snort is sniffing. This parameter is optional. But together with the sensorname
see OptionN it should be unique. By default this is name is empty.

Log statitiscs teysloginstead oktdout . See also optiom .

10

Chapter 5. The programsockservandservsock

-q
Enable quiet dropping, no dropped alerts were written taitbhpsocket , see optionD.
-L LowWater
Sets the.owWater mark, see optiorD . The default value is 9900.
-m mode
Sets the umask tmode for the daemon mode. This affects the mode for the created unix socket and
PID file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x)
format.
-M maxtry

Sets the maximum number of tries to (re-) connect tostiteer . See also optiorw.

-N sensorname

Sensorname which should be used in the database. By default this is the hostname of the machine
runningsockserv It is now possible to use more than one instanceoakservper sensor. Note:
You have to change the unix socket for different instances, see Option

-p port
Defines on whictport to try to reach theerver runningservsock See also optiors .

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user rusooigery

-s snortsocket
Defines the name and directory where the unix domain socket is opened for snort. The default is
/tmp/snort

-S server
Defines the server runnirgervsock The name can be either a full qualified domain name or an IP
address. The default i9.200.200.1 . See also optiorp .

-V area,value

Sets the debug level of the prograsiea specifies the section of the code which should generate
debug outputvalue should be between 0 (disabled) and 9 (maximum output). For further
information read the flREADME.debug. /varlistentry>

-w dir

Sets the working directory in daemon modalio . The default is to use the current working
directory. It is useful to chooseto avoid blocking of mounted filesystems.

-W waittime

Time in seconds to wait between two tries to connect to the server. See also-dption

11

Chapter 5. The programsockservandservsock

5.1.2. Signalhandling

Currently the following signals are used wihckserv

Signals used with sockserv

SIGUSR1

Print statitics about received, sent and dropped alerts.

SIGINT
Cancels the process, prints the final statistics and performs a clean exsbcketame and
pidfile are removed.

SIGTERM

This signal results in the same behaviouS#SINT .

SIGPIPE

This signal is ignored. If theervsockprogram is interrupted during the data is sended. In this case
we simply try to open a new connection and therefore we have to ignore this signal.

SIGHUP

If this signal is receivedockservstops and restarts. First, if enabled, all buffered alerts are dropped
via dropsocket and the final statistics are printed. Furthetketname andpidfile are

removed to enable a restart of the program. (Otherwise the program would fail since the id does not
change!)

SIGALRM

This signal is used to print statistics on a periodically basis.

5.1.3. Some additional notes

Thedrop feature is not enabled by default and has to be compiled in separately. If it is not compiled in
then the optionsD, -L and-H are missing in the output of thé option. It is highly advisable to choose
a very largedighwater mark to buffer as many alerts as possible. This will reduce the possibility of
information loss. On the other hand the difference betwighwater andLowWater should not be

too large. To minimize information loss the alerts are spoolediroa to a mail server. Normally this
server is either located on tioentral serveror is reached via this server. If there are too many alerts
spooled tadrop the emails become unreadable long.

Problems should only arise if the connection to $keevsockprogram is lost for a longer period. But if
there are network problems then it is alike thatp will fail too. If this happens then the alerts are
written either tostdoutor syslog

12

Chapter 5. The programsockservandservsock

Be cautious: With increasing buffer usage the memory consumption raises with about 3 kB for each alert
(actually 1360 bytes per alert plus payload). But this memory is shared winthreprocess. So set the
HighWater to a value where it is safe for the snort process.

If a pid file exists then the program checks only for a running process with this PID. If one process is
found the program exits. There is no check for which program is running, only if one runs!

5.2. The details of servsock

This program provides an TCP socket farckserv After asockservprocess has successfully connected
a child process is forked off for this communication. The child process consists of two threads. One
thread simply receives alerts via the TCP socket and stores them in memory, see picture
sockservservsockprocess. The second thread feeds the stored alerdatabase

To successfully connect there are a few things which must be fullfilled:

- If the endianess of the sensor and central server are different then a connection is permanently refused.
This does not work.

« There is only one remote sensor with the same sensor name (see-dip#nd interface (see option
-1 of socksery allowed. If a second sensor with the same sensor name and interface tries to connect
the access is denied.

- If there are still not yet processed data from the last connection between the remote sensor and the
central server then the connection is as long refused as these data are not stored in the database

. If the database is not available if a sockserv process tries to connect then the connection is refused
temporarily.

- If there is a swap file available, then the connection is temporarily halted until the data of the swap file
is read into memory.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. If
more alerts are available tharrvsockcan insert into thelatabaséthe alerts are buffered in memory.

To reduce the problem on memory shortage due to a high overload, the number of alerts in the buffer can
be limited. This is done as witbockservvia two parameters, theowWater andHighWater marks. If

more alerts than thdighwater mark are buffered in memory as many alerts are dropped until the
LowWater mark is reached. All dropped alerts are written to an unix domain socket. The prdgsam

is able to receive these alerts and send them via email to a list of recipients.

If either sockservcan not connect teervsockon startup or the connection is closed during runtime the
program tries to reopen the connection after a short delay for several times.

13

Chapter 5. The programsockservandservsock

All output can be redirected ®yslog using the facilityLOCALOand levelINFO. A daemon mode is also
supported. Finally, statistics could be printed on a periodical basis or once by sergl®igsR1to the
servsockmaster process. This process will gather the statitistics from all child processes.

5.2.1. Options

There are several options available:

servsock [-bdfhingTuv] [-A delay] [-c config] [-D dropsocket]
[-H Highwater] [-L LowWater] [-m mode] [-M priority]
[-p port][-P pidfile] [-s snortsocket] [-S server]
[-U alertsocket] [-V arealevel] [-w dir] [-W SwapDir] [-Z TimeZone]

The servsock options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these

values betweedelay seconds is printed in brackets. See also oplion

-b
Start the process in the backgrouddemon modeThis automatically activates optieh .

-d
Dump the actual configuration on startup. This is useful if both, a configuration fil§ ésekt
command line options are used in combination and for debbuging purposes

-c config

Specifies which configuration file should be used. The defastrigsock.conf

-D dropsocket

If there are more thaHighwater alerts buffered then the newest alerts are dropped to
dropsocket until theLowwater mark is reached.

-f

Store additional information in the database so thatapfile can be created with the program
getpacket Note: You need an extended database schema to use this option. See the file
README.payload in the distribution.

Print a help message and exit.

-H HighWater
Sets theHighwater mark, see optiorD . The default value is 10000.

14

Chapter 5. The programsockservandservsock

Log statitiscs teysloginstead oktdout . See also optiom .

-L LowWater

Sets the LowWater mark, see optian. The default value is 9900.

-m mode

Sets the umask tmode for the daemon mode. This affects the mode for the created unix socket and
pid file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x)
format.

-M priority

Sets the required priority for alerts to be writtenaiertSocket . The progranalert is able to read
these alerts and send emails to a list of recipients.

Do not resolve the full qualified names of the sensors, use the IP addresses instead. This will avoid
conflicts with thedatabaséf on a new connection the DNS resolution fails or resolves to another
name.

-p port
Defines on whictport servsockshould listen, see also optiea .

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user rusaimgock

Enable quiet dropping, no dropped alerts were written taitbpsocket , see optionD.

Store additional information in the database so thatapfile including all tagged packets relating
to an alert can be created with the progrgetpacket Note: You need an extended database schema
to use this option. See the fiREADME.payload in the distribution.

-s socketname

Defines the name and directory where the unix domain socket ofatadasas opened. A value of
NULL results in an internallULL pointer, this is useful in combination witPostgreSQLIt is also
possible to use a TCP socket Viasthameport.

-S server

Defines the interface wheeervsockshould listen on. The name can be either a full qualified
domain nameor an IP address. The defaultti®.0.0 to bind on all available and configured
interfaces. See also optiem.

15

Chapter 5. The programsockservandservsock

Enable trust modus for theatabaself set, it is assumed that the alert description is already part of
the database. If this is not the case, all these informations are inserted. So it is safe to enable this
feature unless the transfer of alert message is disabkeabirt. But this is a veryexperimental
feature and is usually disabled by default. (But would save 256 Bytes on the wire!)

-U alertsocket

Specifies where the unix domain socket of the alert program can be found, se¢.also

Disables the use of thdertsocket . This is useful if the alert is activated in the configuration file
but there is nalert program running. So it is only useful for debugging.

Print version information.

-w dir
Sets the working directory idaemon modéeo dir . The default is to use the current working
directory. It is useful to chooseto avoid blocking of mounted filesystems.

-W SwapDir
Sets the directory where the swap insor_ SensorNames created and alerts are buffered if the
database connection is lost.

-V area,value
Sets the debug level of the prografmea specifies the section of the code which should generate
debug outputvalue should be between 0 (disabled) and 9 (maximum output). For further
information read the filREADME.debug.

-Z TimeZone

Specifies which timezone should be used to store the time in the database (local timezone versus
UTC). A ZimeZone of zero means to use the same timezone as localtime, any other value would
result in the use of UTC. The default is to use the local timezone.

5.2.2. The configuration file of servsock

Additionally to the command line arguments there are some options which must be set via a
configuration file. At least thdatabaseconfiguration has to be set in the configuratiorffile

The command line options have precedence above the settings in the configuartion file. If an option is
mentioned on the command line this value is used regardless of the settings in the configuration file.

16

Chapter 5. The programsockservandservsock

On the other hand all parameters of the command line can be set in the configuration file (except option
-u). So the command line options are more suitable for quick tests.

The format of the file is simple, the first word is a keyword and the second is the value. They are
separated by a colon () or equal sign (=). White spaces are allowed in any humber.

The values can be put in single (*) or double (") quotes, all between is used as the value with one
exception. This exception is the comment sign (#). All entries after this sign are ignored. To use the
command sign it has to be escaped with a backslash: \#.

To use white spaces in a value they must be surrounded by quotes.

So all this results in a value with space, exept the last one without quotes. This will respdtin
'spa ce’ = "spa ce" = spa ce

All keywords are case insensitive (but not the values!).

The parameters of the configuration file for servsock in detail

DBuser : name
Specifies the name of tliatabasaiser who is allowed to dINSERTS, SELECT andUPDATE of
tables. The default isnort

DBpassword : password
Specifies the password used among withilBaser name to connect to theatabaseNote: An
empty password has to be represented by empty quotes, which is the default.

DBname name

Name of thedatabasevhereservsockshould insert the alerts, defaultssoort

DBtype : name

Type of thedatabaseo use. Actually onlyMySQL(http://www.mysql.com/) anéostgres
(http://lwww.postgresql.org/) are supported and have to be enabled at compile Serwsdck No
default is set since it is not clear whidatabasesupport was enabled at compile timesefrvsock

DBencoding : name

Defines the encoding scheme wich is used to insert the payload intathleaseAllowed values
arehex, base64 andascii . Thebase64 encoding requires less memory in tii@abasebut it
makes it difficult to search for special entries in the payload.ageé only stores ascii characters
to the database, all binary data is replaced by a dot. So the only really useful optiohés the
scheme which is the defallt

17

Chapter 5. The programsockservandservsock

DBtrust : value
A non-zerovalue enables thérust modus for the database. If this modus is enabled it is assumed
that all possible signatures are already part of the database. This will result in slightN&&RTs
since less detaileELECTstatements are needelt is safe to enable this even if you are not sure,
missing signatures will still be inserted. The equivalent command liFe.is

DBtrans : value
A non-zerovalue enables the use tfansactiongogether with the database. If you use the MySQL
database you have to use tables of thpeDB, otherwise the transactions are simply ignored.

PIDFile : pidfile
Specifies which file should be used to store the PID. This file must be writeable by the user running
servsocK This correspond to optiosP .

SocketName : socketname

This specifies where to find the unix domain socket of the database. If theNuatdall capital!)
is given, the database libraries find the socket by their own mechanism. This is useful in
combination with thdPostgreSQldatabase. This is equal to the. If socketname contains a
colon () the first part is interpreted asw@stnamethe second asfort number and a TCP
connection to the database is used.

ServerName : name

Defines on which interface defined by the addssss'sockshould listen on. Possible values for
name are either full qualified names (not very useful) or a dotted IP address. The default is
0.0.0.0 to listen on all available interfaces.

ServerPort : value

Defines the port wherservsockwill listen on. The default is port234 . Compare to optiorp .

AlarmDelay : value
Write everyvalue seconds statistics of received, sent and dropped alerts. In braces the differences
to the last output are printed. See optidn

Syslog : value
If the value is non-zero then the statistics are loggedsyialogand not printed tatdout . The
facility is LOCALOand the level iSNFO. Compare to optioA

FQNSensor: value
With avalue of zero the IP address of the sensor is used as sensor name in conjunction with the
databaseThe equivalent command line option-is.

AlertSocket : alertsocket

Name of the unix domain socket where alerts with high priority are written to. See optidh
alertsocket has the nam&lULL then the alert feature is disabled.

18

Chapter 5. The programsockservandservsock

UnixPriority > value
The value determines the minimum priority where alerts are additionally written to the
AlertSocket °. The command line equivalent is the optidn

DropSocket : dropsocket
Name of the unix domain socket where alerts are dropped to if the number of queued alerts reaches
theHighwater mark. Compare to optioH . If dropsocket has the nam&lULL then the drop
feature is disabled.

DropQuiet : value
If value is not zero then all dropped alerts are not written todh@pSocket . Note: Dropping is
not disabled by this parameter.

HighWater : value
If the number of queued alerts reaches thise thenservsockbegins to drop alerts to the
DropSocket . This corresponds to opticHi .

LowWater : value
Thisvalue must be smaller tharighwater *°. If the Highwater mark is reached so many alerts
are dropped to thBropSocket until this Lowwater value is reached. This corresponds to option
-L.

DaemonMode value
A non-zerovalue enables thelaemon modehe program forks into the background. This
automatically activates thgyslog option. See optiorb .

Umask mode

Sets thaumaskto mode for the DaemonMode This affects the mode for the createiFile . The
mode can be either given iascii, octal (with leading0) or hex(with leading0x). This is equal to
the option-m.

SwapDir : SwapDir

Sets the directory where the swap finsor_ SensorNames created. This file is used to swap out
alerts if the database has gone and is read in again if the database is available and the remote sensor
connects again. The default is to ugar/tmp . See optionW.

FullPayload : value

Store additional information in the database so thadapfile can be created with the program
getpacket Note: You need an extended database schema to use this option. See the file
README.payload in the distribution and optioff .

Reference : value

Store additional information in the database so thatapfile including all tagged packets can be
created with the progragetpacket Note: You need an extended database schema to use this
option. See the filREADME.payload in the distribution and optiosr .

19

Chapter 5. The programsockservandservsock

Debug: area,value
Sets the debug level of the prograsmea specifies the section of the code which should generate
debug outputvalue should be between 0 (disabled) and 9 (maximum output). For further
information read the flREADME.debug. See optionV .

TimeZone : area,value

Specifies which timezone should be used. A value of zerdifoeZone results in the use of the
timezone of localtime. Any other value will result in the use of UTC. See also ogion

5.2.3. Signalhandling

Currently the following signals are used wikrvsock

SIGUSR1
If send to the master process ($8BFile) statitics about received, sent and dropped alerts of each
servsocksockservpair are printed. Each of the forked off processes ingore this signal.

SIGUSR2
If the master process receiveS&USR1signal it sends 8IGUSR2signal to each child process
handling aservsocksockservpair. Each child process prints then its statistics. The master process
ignores this signal.

SIGINT
Cancels the master process, prints the final statistics and makes a clean exitckEieame and
PIDfile are removed. The child processes dump the buffered alerts to the swap file and exit.

SIGTERM

This signal results in the same behaviouS&sINT .

SIGHUP

If this signal is received by the master process thevsockstops each child process by sending a
SIGTERMsignal and restarts itsélf First all buffered alerts are written to the swap files and the final
statistics are printed. Furth8bcketName andPIDFile are removed to enable a restart of the
program. (Otherwise the program would fail since the PID did not change!) The child processes
simply ignore thesIGHUPsignal.

SIGALRM

This signal is used to print statistics on a periodically basis.If this signal is send to the master
process it is forwarded to all child processes.

20

Notes

Chapter 5. The programsockservandservsock

5.2.4. Some additional notes

Thedrop andalert features are not enabled by default and have to be compiksehusockseparately. If
it is not compiled in then the optiond, -L and-H are missing for thelrop and the optionsM, -u and
-U are missing for thalert program in the output of théx option.

In contrast tasockservthe LowWater andHighwater marks have to be choosen with more caution.
First there are more processes running tharséresockprocesses especially tdatabaseFurther the

bottleneck is not the network, it is usually tbatabaseSo it is quite normal that here the number of

buffered alerts increase rapidly on heavy attacks.

Since the sensor name is taken from the IP address of the computer ranoksgrv(the remote sensor)
there is only onesockservinstance per IP address allowed. Otherwise there will be a lot of collisions of
inserts related to théatabase(Two different sensors with the same name try to insert two different
alerts with the same database Sensor ID, for example.)

If the connection diessockservopens a new connection and a neevvsockprocess is forked off. But if
the oldservsockthread feeding thdatabasedid not finished yet there arises a problem like the same
sensor is logging twice times. Therefaervsockhas a list of up t@5 running child processes with the
sensor IP they are dealing with. So if there is still one thread running any new connectisaaksarv
process with the same IP address is rejected!

On startup a handshake must be fullfilled. During this phase the endianess of both partner, the
availability of the database and the presence of a non-zero swap file are checked. Depending on the result
a conncetion is either allowed, temporarily rejected or permanently denied.

If a SIGHUP signal is received by the process with the idPabFile all child processes are terminated
first. If there are buffered alerts it can take some time until all of them are written to the swap files. So a
time delay on restart is not uncommon.

If a PIDFile exists the program checks for a running process with the id of this file. If one is found the
program exits to avoid running the same program twice. But there is no check for which program is
running, only if there is one in the process list!

1. This program povides an unix domasoclet and connects tosener.
2. This program povides asener and writes the alerts via an unix domairclet to the database.

3. One important thing to obey is that either the program has to be started with absolute path or relative
to the daemon working directory (optiew). Or the program has to be started without any path
information and should be found in the systemrH Otherwise the program can not find the own
executable and will fail.

21

9.

Chapter 5. The programsockservandservsock

Sometimes databases hung on many inserts due to things like internal garbage collection. In addition
there are many tables which have to be filled in for each alert. All this will slow down the insert rate
of thedatabase

This not really useful since central server have usually more than on interface or you need a full
qualified domain name for only this interface. Most name server reolve IP addresses in a round robin
procedure for more than one IP address. So the interface on w#iehockbounds would not be
unambigous.

Especially thepasswordor the database should not appear in the processlist.
This option should be removed in the future in favour of only ugieg.

This behaviour is a little bit different to the default one. Here we check or all values like revision and
priority even if they are zero. In the other case we checlfdtL values if they are zero. Indeed |

think if the values are not set in the rule (aka the value is zero) this value should be inserted with the
rule in opposite to keep it HULL value. So maybe this will change in the near future.

This keyword should be replaced BiertPriority in a future release.

10. The mimimum difference between this two marks should be at least greater than 10.

11. This results in a time delay for a restart since first it must be waited until all child processes exit.

22

Chapter 6. The programs alert and drop

These two programs are very similar and are compiled out of the same source file. They provide an unix
domain socket to receive alerts and try to send them via email to a list of recipients.

The alerts are buffered in memory and send via email to a list of recipients. This can be triggered either
on a periodically basis or if a given number of alerts is reached. Both variants can be activated separately
but it is a good idea to use both. The time interval is useful to collect alerts instead of sending one mail
for each alert which could result in a denial of service. The maximum number of alerts has the advantage
to keep the used memory small and the emails in a readable size. Otherwise it could happen that too
many alerts have to be stored in memory until an email could be send.

6.1. The details of alert

This program works in contrast tirop only with servsockand receives alerts via the unix domain
sockets of priority equal or high&mixPriority . See also optiorM of servsock

The primary idea of this program is to have a separate mechanism to inform about critical alerts. Since it
is very likely that thedatabasaes filled with a lot of less important alerts it is quite possible to either
oversee the important alerts or to find them too late.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can
be adjusted via the command line optidhor theMaxCount keyword.

If it is not possible to send an email during this time the program simply exits. Another process should
inform an operator about this problem.

6.2. The details of drop

This program works in contrast tdert with both,sockservandservsock It receives alerts via the unix
domain socket if thelighwater mark of queued alerts isockserv or servsock are reached.

The primary idea of this program is to keep at least minimal informations about alerts. If there are too
many alerts buffered some processes could fail due to memory shortage. So there should be a mechanism
to drop some alerts to keep the buffer size limited. These alerts will not be inserteddiatétaseut

are mailed to a list of recipients.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can
be adjusted via the command line optidhor theMaxCount keyword.

23

Chapter 6. The programalert anddrop

If it is not possible to send an email during this time the program writes the content of this email to
stdout . Another process should inform an operator about this problem. In contralgrrtaloes this
program not exit, it simply continues to work.

6.3. The command line options of alert and drop

Both programs use the same command line options, there is no difference between these options.

drop | alert [-bDFhIpTW] [-A delay] [-c config] [-d domain]
[f from] [-L level] [-m mode] [-M max] [-p port]
[-P PIDfle][-r rept] [-s socket] [-S server] [-w dir]

The alert and drop options in detail

-A delay

Try everydelay seconds to send an email if there are any alerts in the buffer.

-b
Start in daemon mode, switch to a background process. This automatically activates thel option
-c config
This defines the name of the configuration file to use.
-d domain
Usedomain asHELOstring on a connection to thdailServer see options.
-f from
Sets the sender address of the emaifsoio .
-F
Try to resolve the sensor names via DNS.
-h
Print a help text and exit.
-l
Print viasysloginstead oftdout
-L level

If a number oflevel alerts are in the buffer, send an email. A value of zero disables this feature.

24

Chapter 6. The programalert anddrop

-m mode

Sets the umask tmode for thedaemon modeT his affects the mode for the created unix socket and
PID file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x)
format.

-M maxcount
Specifies the maximum number of tries to send an email. If still no email could be send the program
alert exits and the programrop prints all alerts tstdout or syslog see optionl .

-p port
Try to reach thamail serveron thisport . The default is port 25, see also optish.

-P PIDFile

Specifies which file should be used to store the PID. This file must be writeable by the user running
alert/drop!

-r recipient

Sets the address of one recipient for the emails. This option can be used several times to build a list
of recipients.

-s socketname

Specifies which unix domain socket of tygatagramshould be opened to listen for alerts.

-S server

Specifies the mail server which should be used to send the emails. This server should allow relaying
for the server runninglert or drop.

Print version information and exit.

Activates the verbose mode, some useful informations are printed if an email is send. This is useful
for debugging if there are any problems with the mail server.

-w dir

Sets the working directory in daemon modeito . The default is to use the current working
directory. It is useful to chooseto avoid blocking of mounted filesystems.

6.4. The configuration file for alert and drop

The format of the configuration file is the same asdervsoclkandsocksery

25

Chapter 6. The programalert anddrop
The parameters of the configuration file for alert and drop in detail

AlarmDelay :time
The program will check evenyme seconds for the presence of received alerts. If there are any an
email is send. The default is 5 minutes (300 seconds). The equivalent command line ogtion is
AlarmLevel : level

If the number of received alerts reachegl than an email is sent regardless of the status of
AlarmDelay . The default is 0 which disables this feature. But it is recommed to use this feature
since it limits the number of alerts which are buffered in memory. The command line option is

DaemonMode value

A non-zero value enables the daemon mode. The program forks off in the background and detaches
from the terminal. See also optiaemonDir andUmask. This automatically enables also the
optionSyslog . The command line optios .

FQNNamesvalue
A non-zero value enables resolving of full qualified names of the reporting sensor. To reduce CPU
usage this values are cached in ann interndl Bse also optiorF .

MailServer :name
Specifies the server which should be used for relaying of the emails. This server should allow
relaying for the different hosts runnirspckservandservsock The default server imcalhost
The command line option isS .

MailPort : number
Specifies that the mail server is reached via pantber . The default is pore5. The command line
option is-p .

MailRecipient : address
Sets the address of one recipient of the emails. This option can be used several times to build a list
of recipients. This is equal to the command line option

MailSender : address

Sets the address of the sender of the emails. The command line opfion is

MailDomain : domainname
Specifies the domain name which should be used in a mail session on skEt@s({ring), see
option-d .

MaxCount : count

Specifies the maximum number of tries to connect to the mailserver and deliver mailscofter
tries the progranalert terminates! The prograirop simply writes all alerts to syslog or stdout
and continues to work. See optievi.

26

Chapter 6. The programalert anddrop

PIDFile :filename
Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock This correspond to optiosP .
SocketName : socket
This specifies which unix domain socket should be openeddokservandservsock This is equal
to the-s .
Syslog : value
If the value is non-zero then all output is written syslogand not printed tatdout . The facility
is LOCALOand the level iSNFO. Compare to optioA
Umask mode

Sets thaumaskio mode for the DaemonMode This affects the mode for the createtbrFile and
unix domain socket (se&ocketName). Themode can be either given iascii, octal (with leading
0) or hex(with leading0x). This is equal to the optiom.

DaemonDir : directory

Sets the working directory in daemon modelt@mondir . The default is to use the current
working directory. It is useful to chooseto avoid blocking of mounted filesystems. See optien

6.5. Signalhandling

Currently the following signals are used walert anddrop:

SIGINT

Cancels the program, the socket and PID file are removed and the program exits. The piogram
prints all buffered alerts, either viadout or syslog see optionl or keywordSyslog , before it
exits.

SIGTERM

This signal results in the same behaviouS&sINT .

SIGHUP

If this signal is received the unix domain socket will be closed, the socket and PID file removed and
thre porgram gets restarted. The progmop prints first all buffered alerts.

SIGALRM

This signal is used to print statistics on a periodically basis. If this signal is send to the master
process it is forwarded to all child processes.

27

Chapter 6. The programalert anddrop

Notes

1. Ifthe DNS name changes while the program runs, the old names are still used.

28

Chapter 7. The program getpacket

This program can build a network packetgcapformat which can be used by an analyzer ligpdump
or ethereal

This requires some additional options to be used.

- The standard database scheme as shipped with snort must be extended.
« The payload has to be storedtiexformat.base64s not supported yet arasciiis useless.

« The optionf of servsockor the parametefullPayload in servsock.conf have to be enabled
when the alert is stored in the database.

- Actually only ethernetis supported for the link layer. But to use another link layer is not really a
problem.

The advantage of this approach is that the protocol analyzing mechanisms of prograstisdieal are
far better than it is possible withCID. For example think of DNS queries or responses.

7.1. The extension of the database scheme

To store the additional header and pcap information in the database the normal scheme (as part of snort)
must be extended. These extensions work well even with programadike.

These extansions must be done within the database, eithemyittyl or psql. If you have choosen the
right database then enter at the command prompt the following commands:

ALTER TABLE data ADD COLUMN data_header TEXT;

This command adds a column for the missing packet headers. The payload stored by the normal process
contains only the protocol payload of the alertT&P alert only stores the payload embedded in the
TCPstream, nal CP header notP header nor the link level data.

ALTER TABLE data ADD COLUMN pcap_header TEXT;
This column stores thpcapheader containing the time when the packet was captured and the snaplen.
ALTER TABLE schema ADD COLUMN full_payload SMALLINT;

With this column it is possible to note that the database is capable of storing the extended data.

29

Chapter 7. The progrargetpacket

UPDATE schema SET full_payload=1;

This sets the capability to store the full payload. If set to 1 themvsockwill accept thef option or
FullPayload keyword.

Similarily, if the -r option orReference keyword should be useable to store the reference of tagged
packets then the event table has to be extended:

ALTER TABLE event ADD COLUMN reference INT8;
And the schema table has to be extended and updated so that we can query this settings.

ALTER TABLE schema ADD COLUMN reference SMALLINT; UPDATE schema SET
reference=1;

If all this commands were applied to the database you have still to activate the storage of the additional
data withinservsock

7.2. The command line options of getpacket

getpacket [-ahtvz] [-c ConfigFile] [-C PacketCount] [-S SensorlD] [-w DumpFile]

The getpacket options in detail

-a
Build a pcap file of all packets with the same revision (tagged packets) which contain SID and CID.
The optiont is automatically activated. Therefore you need an extended database scheme (see
README.payload).

-c ConfigFile
Specifies which configuration file should be used. The defaghtisacket.conf in the
installation configuration directory. It is also possible to usestitesock.conf of servsock The
not needed keywords are ignored, only a warning is printethitaut . This configuration file
contains the data to needed to access the database.

-C CounterID
Specifies the count&ID of the alert in the database. Together with the sens@I|this data is
unambiguous specified.

-S SensorlD

Specifies the ID of the sensBiD in the database. Together with t6¢D is the data is unambiguous
specified.

30

Chapter 7. The progrargetpacket

Specifies that getpacket should attempt to use the reference column to include all the tagged packets
relating to the initialSID/CID pair.

'

Prints information about the version and exits.

-w DumpFile

Specifies which file is used to store theapdata. If the special file nameis mentioned then the
pcap data is written tetdout .

Deactive the recreation of a pcap file with tagged packets. This way it is possible to disable the
activation within the configuration file.

7.3. The configuration file of getpacket

The getpacket keywords in detail

DBuser : name
Specifies the name of tliatabaseauser who is allowed to dBELECT of the tables. The default is
snort

DBpassword : password
Specifies the password used among withlBeser name to connect to thdatabaseNote: An
empty password has to be represented by empty quotes, which is the default.

DBname name

Name of thedatabasevheregetpacketshould select the alert packet data, defaultsnort

DBtype : name

Type of thedatabaseo use. Actually onlyMySQL(http://www.mysql.com/) anéostgres
(http://lwww.postgresql.org/) are supported and have to be enabled at compile Sewsdck No
default is set since it is not clear whidatabasesupport was enabled at compile timesefrvsock

SocketName : socketname

This specifies where to find the unix domain socket of the database. If theNuatdall capital!)
is given, the database libraries find the socket by their own mechanism. This is useful in
combination with thdPostgreSQldatabase.

If the servsock.conf file is used then only the necessary keywords are used. All other options are
ignored and a warning is printed s$aderr

31

Chapter 7. The progrargetpacket

7.4. Some final notes on getpacket

If the full payload is not stored in the database then only an epgdpfile only containg gcapfile
header is created. An error message is printesiderr.

Some alert packets seem to have no payload (if you use ACID for example) but this is only for the higher
level protocols valid. Only preprocessor alerts have no payload at all since they do not act on a special
network packet.

The restriction to ethernet packets is only for feapheader. Since the data link layer may have
different sizes this must be entered in reapfile header. But this information is not forwarded to the
central server. But this value can be easily adjusted.

Note: The rebuild packet also contains the MAC addresses of the ethernet packet and the capture time of
the host runningnort.

If the reference data is not stored in the event table, getpacket cannot dump all related tagged packets in
the pcap file.

32

Chapter 8. The program fpg, a false positive
generator

This program creates network packets which raise false positive alerts wsthant. It reads asnort
configuration file and tries to build one network packet for each rule containing all necessary values.

Nearly all kind of network packets can be created, only some newer featusasrblike byte_test
and soméCMP types are not supportéd

8.1. The details of the fpg program

Actual fpg uses a lot of snort keywords. Up to 5 ledeiinclude files are supported.
snort keywords used by fpg

+ include
. alert

+ log

.« var

. tcp

- udp

« icmp

. any

. 1pc

« msg

. content
+ uricontent
.+ dsize

+ sameip
. offset

. distance
- depth

« within

. fragbits
. id

«+ ip_proto

33

Chapter 8. The prograrfpg, a false positive generator

.l

. itype

. icode

« icmp_id

« icmp_seq
- isdataat

. flags

«+ flow

.« seq

. ack

Options not mentioned here are simply igndréu have explicitly to specify a source and destination
address. So any special address in the configuration file are overwritten. So some rules will not raise
alerts due to this wrong addresses.

8.2. The command line options of fpg

fpg [-hve] [¢ config] [-D count] [-n count] [-M maxpackets]
[-R msec] [-T msec] -s source -d destination

The fpg options in detail

-c config

Specifies which configuration file ghort should be used to generate the network packets. The
default issnort.conf in the current directory.

-d destination

This option is mandatory and specifies the destination address used in the network packets. So any
destination addresses in the configuration file are ignored.

-D count

Insert everycount packets a time delay, see optiah. This feature is disabled by default.

Runfpg in an endless loop, after the configuration file is worked through the program starts again at
the beginning. The optiomM is still valid. See also optiom .

Print some help information and exit.

34

Chapter 8. The prograrfpg, a false positive generator

-M maxpackets

Specifies the maximum number of network packets to be generated and sent. Seesaiden .

-n count

Send each build network packstunt times. See alseM which is still valid and optione .

-R msec

Specifies a random delay between two network packets of maxiseal milliseconds. This is
useful to get a more random like traffic and to limit the rate.

-S source

This option is mandatory and specifies the source address used in the network packets. So any
source addresses in the configuration file are ignored.

-T msec

Specifies the time delay between the number of network packets specified-bydpé&on. This is
useful to avoid an overrun of the sending queue.

-V

Print version information and exit.

8.3. Some final remarks on the program fpg

Without any limitation and a fast machine the rate of generating network packets is much faster as the
network device is able to generate. Therefore the optiorend-T were introduced.

The-R option was introduced to get a more realistic network traffic shape. This way it is possible to
study the behaviour afnort on a more realistic scenatrio.

The-n option is the fastest way to generate a lot of alert packets, but all are equal. If one packet is build
it is sent again several times. So all these packets look identical.

With the-e option the configuration file is walked through several times and all network packets are new
build. Any unspecified values in the configuration file are replaced by random values. So with this option
the network packets for the same rule look a bit different.

The destination address should be a valid one, there should be a target with this address. Otherwise all
packets will be blocked at the last hop with unsaturated arp requests for the destination address.

Be aware that nearly all packets will result in reset packets sent back to the mentioned source address
(see options).

35

Chapter 8. The prograrfpg, a false positive generator

Notes

1. To build network packets with own contents, e.g. different source addresses as the system has, TCP
packets with flags set and so on, you must be root to use this progam!

2. To raise alerts within snort-2.0.0 you have to disablestream4 preprocssor. This preprocessor
discards all packets which are not established and the rule says the packet has to be established.

3. This is only one parameter in the source file and can be easily increased.

4. These options are ignored, not the whole rule!

5. TheC functionusleep() is used, wich can sleep for microseconds. But the finest granularity of this
function is in the range of 108z Therefore we use a delay in miliseconds every few packets instead
of anusleep() after each packet is sent.

36

Chapter 9. Summary of the tools and a final
survey

The pictureshows how all these tools work togethemort watches the Ethenet wire for suspicious
traffic and reports alerts wockservwhich forwards them tgervsock This program writes the alerts
together with the payload indatabase

Ethernet

$ Sensor

/tmp/ snort
snort - | sockserv
unix socket
TCP->1234
ftmp/alert
servsock - alert
unix socket TCP—»25
unix
socket Stmpd drop
unix
socket
drop
TCP-»25
database

Central Server

Anillustration howsocksery servsock alert anddrop work together.
The progranfpg can be used to generate traffic on the ethernet which should raise alertssmibnin
These alerts are written to the unix domain sodkap/snort ~ wheresockservreads them.

One thread o$ockservreads in these alerts whereas the second thread sends the alerts via TCP (port
1234) to thecentral severAll alerts are buffered to account for bottlenecks in the chain.

On thecentral sevethe master process eérvsockwaits for new incoming connections from remote
sensorslf a new conncetion is established a process is forked off to handle this commmunication.

One thread is of this process receives the alerts and stores them in a memory buffer. The second thread

37

Notes

Chapter 9. Summary of the tools and a final survey

takes these alerts out of the buffer and stores them via an unix domain socketlaiahaseOn alerts
with a high priority the details and ID of this event are written to the unix domain séoketlert

The progranalert reads this alert informations and collects them. On a periodically basis or if a given
number of alerts is reached this information is send via email to a list of recipients.

If there are too many buffered alerts withtéarvsocka drop functionality is activated. If theighwater
mark is reached then as many alerts are written and dropped as miany/tioop until the LowWater
mark is reached.

The prograndrop reads these alerts and collect them. It works &lert but does not store the database
ID since these alerts are not part and will not be part otidabaself the sending of mail fails for
several times these alerts are writtesttbut or syslogso no alerts should be lost. This behaviour is
different toalert which would simply delete these alefts

1. The prograndrop can also work witrsockservbut this is omitted in this picture.

2. The reason for this behaviour is quite simple: The progasert is intended to inform about alerts
with high priority if they arive. But these alerts are already part of the database. So if the sending of
mail fails one can still find these alerts in the database.

38

	FLoP 1.5.1
	Table of Contents
	List of Examples
	Abstract
	Chapter 1. Introduction
	Chapter 2. Programs of the project
	The patch and programs of FLoP

	Chapter 3. The snort patch
	3.1. Statistics with snort

	Chapter 4. Configuration of FLoP
	4.1. Some notes on the configuration options
	The configure options in detail

	Chapter 5. The programs sockserv and servsock
	5.1. The details of sockserv
	5.1.1. Options
	The sockserv options in detail

	5.1.2. Signalhandling
	Signals used with sockserv

	5.1.3. Some additional notes

	5.2. The details of servsock
	5.2.1. Options
	The servsock options in detail

	5.2.2. The configuration file of servsock
	The parameters of the configuration file for servsock in detail

	5.2.3. Signalhandling
	5.2.4. Some additional notes

	Chapter 6. The programs alert and drop
	6.1. The details of alert
	6.2. The details of drop
	6.3. The command line options of alert and drop
	The alert and drop options in detail

	6.4. The configuration file for alert and drop
	The parameters of the configuration file for alert and drop in detail

	6.5. Signalhandling

	Chapter 7. The program getpacket
	7.1. The extension of the database scheme
	7.2. The command line options of getpacket
	The getpacket options in detail

	7.3. The configuration file of getpacket
	The getpacket keywords in detail

	7.4. Some final notes on getpacket

	Chapter 8. The program fpg, a false positive generator
	8.1. The details of the fpg program
	8.2. The command line options of fpg
	The fpg options in detail

	8.3. Some final remarks on the program fpg

	Chapter 9. Summary of the tools and a final survey

