
PlugMan

A simple but powerful Ruby plugin framework.

Table of Contents
Overview.. 2
Plugin Types... 2

Plugins as Dependencies..2
Plugins as Extensions...2

Doing it in Code... 3
Main Application... 3

Load All Plugins..3
Start the Plugins.. 3
Run the Main/Base/Core Plugin... 4

Plugin Goodness.. 4
Running Extensions.. 5
Plugin Lifecycle.. 6
Cleaning Up.. 6

Overview
PlugMan is a simple and effective plugin architecture for building Ruby applications. It allows the
developer to create programmes from highly reusable components, and allows programmes to
become highly extensible by opening them up to external development opportunities.

PlugMan manages a repository of plugins.Plugins can be loaded at any time and can also be stopped
and started at will.

There are two main mechanisms that are used in PlugMan's architecture:

1) Plugins as dependencies; and
2) Plugins as extensions

These are explained in the next section.

Plugin Types

Plugins as Dependencies
Suppose plugin_a requires some service of plugin_b. When plugin_a is defined, it has an explicit
dependency requirement on plugin_b and won't be able to function without plugin_b being present.
plugin_b does not require (or even know about) plugin_a.

An example of this may be that a toolbar plugin may require the services of a widget_factory
plugin. The widget_factory plugin does not know anything about the toolbar plugin but the toolbar
plugin will not function without widget factory.

At runtime, toolbar will get a reference to widget_factory through PlugMan, and it will then execute
the method on widget_factory that it requires.

This type of plugin use has the child plugin executing the parent plugin.

Plugins as Extensions
Suppose plugin_x defines an extension point ext_x. plugin_y and plugin_z are defined as extending
plugin_x/ext_x and at runtime, plugin_x discovers plugin_y and plugin_z. plugin_x does not
explicitly know about the extending plugins until they are discovered, and even then it only knows
the interface method to call.

To illustrate, suppose we have a preferences screen in our application.Some parts of our application
will need to present the user with configuration items. To do this, they extend an extension point
defined by our preferences plugin. The following diagram shows the preferences plugin and a
couple of extensions than need configuring: user_information and chat_window (perhaps this is for
a chat client):

toolbar
requires :widget_factory

widget_factory

At runtime, preferences will ask PlugMan for a list of plugins that are defined as extending its
prefs_ui extension point. For each of the returned plugins, preferences can execute a contract
method

It is possible for plugins to have multiple extension points, they can also extend multiple different
plugins and extension points.

This kind of plugin use has the parent plugin executing methods on the children.

Doing it in Code
Now the theory is done with, let's put it all together.

Main Application
Your main application is usually just a bootstrap for your plugins. Application startup will typically
consist of the following three steps (as far as PlugMan is concerned):

1) Load all the plugins, usually from a subdirectory;

2) Start all the plugins; and

3) Run the method of your main/base/core plugin.

Of course all this is advisory only. You can load plugins at any time you like, start/stop them at will
and run whatever method you feel like on any plugins you desire. But the above steps will help get
you started in you application.

Other things your application may do, but are not listed above, are check command -line parameters
or set up other application specific infrastructure. The following code snippets are take from the
PlugMan demo called Texter (./src/demos/Texter.rb). Texter is a trivial example application
demonstrating PlugMan's abilities. Texter takes a string and transforms it in many different ways
using plugins.

Load All Plugins
PlugMan defines a method to do this for us. It recursively scans a directory tree for all .rb files and
loads them. Typically all the plugins for an application will live in their own distinct directory tree.

 # load all the plugins in the plugin dir
 PlugMan.load_plugins "./demos/text_demo_plugins"

Start the Plugins
Once again, PlugMan has methods to perform this. Plugins can be loaded individually using

preferences
extension_point: prefs_ui

user_information
extends :preferences/pref_ui

chat_window
extends :preferences/pref_ui

PlugMan.start_plugin(plug_name) or all registered plugins can be loaded using
PlugMan.start_all_plugins.

 # Start all the plugins
 PlugMan.start_all_plugins

PlugMan.start_plugin(plug_name) is smart enough to know that a plugin can't be started without
starting all it's parent (required) plugins first. In this case, all dependent plugins are also started your
behalf.

The same goes for stopping plugins. There are two methods PlugMan.stop_plugin(plug_name) and
PlugMan.stop_all_plugins. The former will stop any plugins that depend on the plugin being
stopped.

Run the Main/Base/Core Plugin
Typically you will define a main/base/core plugin that is the parent of all your application's plugins.
This should typically add the PlugMan root plugin as required. In the Texter application there is the
:main plugin in the core subdirectory. The application code runs the :main plugin after all the
plugins are loaded and started:

 # execute the transformations using Hello, World!
 PlugMan.registered_plugins[:main].do_xforms("Hello, World!")

PlugMan.registered_plugins is a Hash of all the registered plugins in the system (both started and
stopped.) The Hash is indexed by the plugin's name, so to get a reference to the :main plugin, we
use the code:

 PlugMan.registered_plugins[:main]

And the application knows that the :main plugin has the method do_xforms(str)...so it ust runs it.

There are no hard or enforced interface contracts in PlugMan, just ol' duck typing. When a plugin
author creates a plugin or extension point, they should document the interface so other plugin
authors can easily interact with their plugins.

Plugin Goodness
Plugins are of the class Plugin, but you don't actually create any subclasses of Plugin. Instead, your
plugin files (which are .rb files) will contain a code block that defines the plugin using the
PlugMan.define method. PlugMan.define will create a Plugin instance on your behalf and add it to
the registry of plugins. It will also do some metadata manipulation behind the scenes.

An example of a plugin definition is (the entire contents of CaseSwapRevers.rb):

PlugMan.define :case_swap_reverse do
 author "Aaron"
 version "1.0.0"
 extends({ :main => [:transform] })
 requires [:case_swap, :reverse]
 extension_points []
 params({ :description => "Swaps case and reverses the input
text, using other plugins." })

 def xform(str)
 ret = PlugMan.registered_plugins[:case_swap].xform(str)
 PlugMan.registered_plugins[:reverse].xform(ret)
 end
end

The first line calls PlugMan.define telling PlugMan the name of the new plugin. The lines
following describe the plugin metadata. These fields are described as:

author The plugin author.

version The plugin version. Only latest version of a plugin can be active.

extends Extension points this plugin extends { :parent_plug => [:extpt1, :extpt2],
parent_plug2 => [:extpt3] }

requires The plugins that are required by this plugin (not needed for extensions though).

extension_points Extension points defined by this plugin [:ext_a:, :ext_b] that other plugins can
extend.

params Parameters to pass to the parent plugin { :param1 => "abc", :param2 => 123 }

source_file The file that the plugin was loaded from, populated by PlugMan.

The above plugin does not define any extension points but does extend the :main plugin and
requires the use of two other plugins, case_swap and :reverse.

The xform(str) method is the method required by :main plugin's :transform extension point. During
the processing of the :main plugin,xform(str) will be executed.

Running Extensions
Extensions are useful for openly extending your application. The beauty of extensions is that the
parent plugin doesn't need to know anything about the extending plugin. As long as the extension
implements the require interface method, it can be successfully used by the parent plugin.

PlugMan know which plugins have extension points and which plugins extend those extension
points. A plugin needs only to ask PlugMan for a list of plugins that extend an extension point.

Here is an example of a plugin that defines an extension point (a slightly modified version of
Texter's :main plugin):

PlugMan.define :main do
 author "Aaron"
 version "1.0.0"
 extends(:root => [:root])
 requires []
 extension_points [:transform]
 params()

 # Uses plugins to perform string transformations
 def do_xforms(input)

 puts "Input text is #{input.inspect}\n"

 # run the text processor plugins
 PlugMan.extensions(:main, :transform).each do |plugin|
 out = plugin.xform(input)
 puts out
 end
 end

It can be seen that this plugin defines an extension point called :transform. In bold is the line of
code that gets a list of plugins from PlugMan that extend the :transform extension point. Each of
the plugins that extend :transform must implement the xform(str) method.

The method PlugMan.extension(plug_name, ext_name) asks PlugMan for a list of plugins that
extend the plugin plug_name's extension point :transform. Theoretically it is possible for a plugin
to request a list of plugins that extend another plugins extension point but this is probably not a wise
thing to do unless you really know what you are doing.

It is also possible to have multiple extension points in a plugin.

Plugin Lifecycle
The Plugin class defines plugin lifecycle methods start and stop. These are executed when
PlugMan.start_plugin(plug_name) and PlugMan.stop_plugin(plug_name) are run. By default these
methods just return true but if there is any specific processing required in the plugin start/stop you
can override these methods. Returning Boolean true indicates the method was successful, false
indicates some kind of error occurred.

Cleaning Up
It is advisable to stop all extensions before terminating a programme.Each plugin can have its own
shutdown sequence that may persist data or cleanup resources. This can be done using
PlugMan.stop_all_plugins.

	Overview
	Plugin Types
	Plugins as Dependencies
	Plugins as Extensions

	Doing it in Code
	Main Application
	Load All Plugins
	Start the Plugins
	Run the Main/Base/Core Plugin

	Plugin Goodness
	Running Extensions
	Plugin Lifecycle
	Cleaning Up

