
SimpleSPA

Applications Contents:

 VPNFinal.jar (this is the jar of the server side of the application)

 SPASimpleCSCompanion.jar (this is the jar of the client side of the app for Linux)

 SPASimpleCSCompanion_windows.jar (this is the jar of the client side of the app for

Windows)

 sampleSPA.conf

 source code files

SimpleSPA Application Overview:

This application consists of a single packet authorization mechanism designed for the purpose

of hiding semi-public services like a SSH server. There is a server side (Linux only) and a client

side (Windows and Linux). This app is similar to FWKnop and more of an academic/proof of

concept app as opposed to full blown commercial quality app. It has however been tested

extensively and I use it regularly as I travel frequently for work. I use it in conjunction with my

SSH server. I keep all ports closed on the iptables firewall and allow SimpleSPA to briefly open

the SSH port to allow for a connection and then close the port to new connections.

The app involves a client that creates a packet with a payload encrypted with the public half of

two different RSA keys. The idea is that one key would be shared by all users and it would

encrypt the user name of the individual. A second key specific to each individual user would

encrypt a pre-shared key (just any old string, nothing secret about it really) and a timestamp (to

counter replay attacks). The server would receive this packet and decrypt this first half of the

packet…which would give us the user name of the person sending the packet. The server would

then know which user specific second key to use to decrypt the pre-shared key and time stamp

to evaluate them for acceptability. If all is good, then the server would open up a port for the

semi-public service we were trying to conceal for a brief amount of time to allow for a

connection to be made.

Upon receiving a successful packet, an iptables rule will be inserted allowing new connections for the

port specified in the conf file. This assumes (probably should be parameterized) that iptables is located

at /sbin/iptables. The type of rule inserted (again should also be parameterized, maybe next release) is

like the following:

$IPTABLES –D –i eth0 –s <sourceIP> -p tcp –dport <port> -m state –

state NEW,ESTABLISHED,RELATED -j ACCEPT

Another assumption I make is that your iptables firewall will have some kind of rule to allow established

traffic to pass. The idea is to let SimpleSPA briefly open a port, let the user make the connection and

then close the port, at least for new connections. In my firewall, I have rules like the following to allow

for established traffic to pass.

#Allow established connections:

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Client SimpleSPA

UDP Authentication

Packet

Step 1

Outer Public Key

Inner Public Key

Encrypts User Name

Encrypts Pre Shared

Phrase + timestamp

The payload of the

UDP Authentication

Packet

Step 2

SimpleSPA runs a custom

Libpcap program that listens for

UDP Authentication Packets on

the agreed upon port

UDP Authentication

Packet

When a UDP Authentication

packet is received, the IP

address and payload are passes

on to a custom Java program

that will decrypt the keys

UDP Authentication

Packet

Step 3

The client formulates and sends this packet with

a custom java program and encrypts the payload

with the public half of 1024 bit RSA keys

The outer public key is common to all clients

while each client will have a unique inner key

The custom Java program takes

the first half of the encrypted

payload and decrypts it with the

Outer Private Key, which is the

complimentary half of Outer

Public Key. This will give the

server the User Name of the

client trying to authenticate.

The server will then lookup in a

list (flat file or database) to see

both if that is indeed a valid user

and to see which Inner Private

Key to use for decrypting the

second half of the payload.

Outer Private Key

Decrypt first half of

payload

This gives the server the

User Name and indicates

which Inner Private Key

User-Specific Inner

Private Key

Step 4 If after decrypting the first and second half of the UDP auth packet

with both appropriate sets of keys, the custom Java program

decides that request is authentic, then the program will open the

SSH port on the server to accept traffic only from that IP for a set

period of time (30 seconds…) to allow the connection. Once the

connection is established, the port is the closed on the firewall, but

since the traffic is now in an “established” state, IPTABLES will

allow the traffic to pass.

The client is then free to tunnel a connection to internal web

application and Remote Desktop Connections through the custom

GUI.

Authentication Transaction

Step 4: Not included in this release.

Steps for Setup and Usage:

On the server, you will need to be running iptables at /sbin….not sure if any other Linux variants run it in

other places, but BT4 runs it there so its good enough for me. You will also need to install the fun Sun

JDK6. The repository version is fine and the apt-get command is shown below. You will also need to

install a .de file the folks who wrote Jpcap

(http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/download.html), which is a Java wrapper/API for

capturing packets. Yes the listener component of this app could easily have been written in C using

Libpcap libraries. I did in fact do it this way initially, but quickly found that I am a better Java developer

than I am a C developer.

Additionally you will need a jar from the the Bouncy Castle folks

(http://www.bouncycastle.org/download/bcprov-jdk16-145.jar) who provide crypto libraries for

creating the RSA keys for encrypting the payload of the single auth packet. The link for version 145 is

posted above. I’ve been using version 138, cause I developed it a while ago. I will test sometime soon to

make sure there are adverse consequences to using the latest version.

Server side config:

1. apt-get install sun-java6-jdk

2. dpkg --install jpcap-0.7.deb

Server side usage:

1. Create the conf file with all the appropriate variables.

2. Create a pair of keys of keys that all users will use and then a pair of keys for each specific user.

Remember that the payload of single auth packet will contain strings encrypted with the public

half of each of the keys.

3. Distribute the public key halves to the whoever the client will be and place the private keys in a

file specified in the conf file that will contain string entries pairing up the user names to the

private key file location (example. Bob.smith=/opt/simpleSPA/users/bobPrivKey)

Linux key generator call sample:

 $ java –cp <location>bcprov-jdk16-138.jar:<location>VPNFINAL.jar vpn.KeyGenerator <conf

file location> <private key name> <public key name>

http://www.bouncycastle.org/download/bcprov-jdk16-145.jar

4. Setup the conf file.

5. Fire up the server. Write a script that will check if the process is running and restart it if by

chance happened to crash….or else you will locked out of your SSH, or whatever service you are

hiding 

Linux SimpleSPA call sample:

 $ java –cp <location>bcprov-jdk16-138.jar:<location>VPNFINAL.jar vpn.KeyGenerator <conf

file location> <private key name> <public key name>

Sample Conf file

Windows Client Side Usage

The Windows side is very straight forward.

Linux Client Side Usage:

Linux is a bit more picky with the client side. You have to specify a policy explicating stating some

permissions. Maybe there is a better way to do this, I don’t deal with permissions and policy files very

often.

Windows client side call sample:

c:\>java –cp <location>\bcprov-jdk16-138.jar;<location>\SPASimpleCSCompanion_windows.jar

spa.UDPPacketAuthStandAlone_v2 <source IP> <master public key> <user specific public key>

<username> <source port> <destination port> <destination IP>

Linux client side call sample:

 $ java –Djava.security.manager -Djava.security.policy=<location> –cp <location>bcprov-jdk16-

138.jar:<location>SPASimpleCSCompanion.jar spa.UDPPacketAuthStandAlone <source IP>

<master public key> <user specific public key> <username> <source port> <destination port>

<destination IP>

The whole thing in action:

It is setup to log to a file in xml format.

