Metasploit Framework Version 2.1
User Crash Course

Table of Contents

INEEOAUCTION. 1.ttt et et e et e st e et e e bt e e beesnbeeenteennaeenseeenne 2
WAL 1S 1620ttt etb e e et e et e e e sabeeesbeeesaeeesseesnseeeseeensseeanseaesneeans 2
| F3 TS 7211 -1 10 ) TSRS 3
INStallation 0N UNIX......c.ceiiiiiieeiieeiieeciieeieeeee ettt et e e e seaeeeaeeebaeeebeesnseesnseenseaenseeenne 3
Installation 0n WINAOWS........c..iiiiiiiiiiiecie ettt e s e e e e beeesaseeens 3
PLAtfOrm CaAVEALS. .......eeeiieeiiieiie ettt ettt ettt et e st e et e et e e e e sab e e nbeesaseeenes 3
GEttING StATEA.....ccuvvieeeiiieeeieee et e e et e e et ee e e rr e e e ebeeeeenraaeeennaaeeensd 4
The Console INtEIfaCe........ccccuiiiieiiiiieciee e ennee e D
CONSOLE EffICIENCY....ccuviiiiiieiieciiieeie ettt ettt e e e e ssbeesnseeenneeennaees 4
Selecting an EXPIOit.........ciieciiiiiiiiiiceciiee ettt ere e e re e e esnneeeennen s
EXPLOTE BASICS...uuiiiiiiiiiieiieetieiie ettt ettt ettt e et e et e e b e e ssaesnsaesnteenasesnseensnas 4
ENVITONIMENTS. .....eiieiiiiieciiie ettt ettt e ste e e et ee e eibeeeesnteeeessseeeessaeesssaeeessaeennsseean 5
Global ENVITONMENL........coiiiiiiiiiiiiieie ettt ettt ettt ee et e st esabeesnbeeenneeens 5
Temporary ENVITONMENT...........oiiiiiiiiiiiie ettt eaee e sireeeeeeneeeenend 6
Using the Environments Effectively.........ccccoooviiiiiiiiiiiiccceeee ) 7
Advanced Environment SEttings..........ccccverviiiriiieriiieiiienieerieeee ettt 8
UsSINg the FrameWOTK.........ccccuiiiiiiiiiiie ettt enae e e ae e e 11
Configuring an EXPLOit........cccviiiiiiiioiiieieieeeee ettt 11
Selecting the Payload...........ccueeeiiiiiieiiiieeeee e e e 11
Launching the EXplOit........c.cooiiiiiiiiii e 11
The Command Line INterface..........ccceeevieriieriiiiiieie et 12
The Web INterfaCe.......ccccuviiiiiiiiecee e et aeeaae s 12
AdVANCEd FRALUTES. .....c.uviiiiiiiie ettt ettt ettt e et e b e e ebeeenbeeenneenenas 13
InlineEgg Python Payloads............ccouiiiiiiiiiiie et 13
IMpurity ELF INJECHION. ... ..couiiiiiiiiieiiee ettt 14
Chainable ProXI€S........ceiiiiieiiiieeiiieeie ettt sttt e e e e st e e estae e sbeeeennseeenseeeennes 14
UploadEXec Payloads.........cccviieiiiiiiiieeciee ettt e e vae e s sere e e save e e 14
MOTE INFOTMMALION. ... .eeuiiiiiiieiie ettt ettt sae e saae et e esbeeesbeessseeesbeessneennnas 15
WED STEE...eeiiiiiie ettt ettt e et e e et e e s tte e e st e e e aaeeesnsaeeennraeeeeaaaennnaes 15
IMATIING LISttt ettt et ettt ettt e et e entaeebaeensaeenneeennes 15
DIEVEIOPETS. ..eeee ettt ettt ettt et e et e e st e e ettt e e eateeensaeesnbeeeesseeensseeensaeeennseeenns 15

Copyright © METASPLOIT.COM 2003, 2004



Introduction

This document is the user guide for version 2.0 of the Metasploit Framework, its
goal is to provide a basic overview of what the Framework is, how it works, and
what you can do with it.

What is it?

The Metasploit Framework is a complete environment for writing, testing, and
using exploit code. This environment provides a solid platform for penetration-
testing, shellcode development, and vulnerability research. The majority of the
Framework is composed of object-oriented Perl code, with optional components
written in C, assembler, and Python.

Copyright © METASPLOIT.COM 2003, 2004



Installation

Installation on Unix

Installing the Framework is as easy as extracting the tarball, changing into the
created directory, and executing your preferred user interface. We strongly
recommend that you compile and install the Term::ReadLine::Gnu Perl module
found in the 'extras' subdirectory. This package enables extensive tab-
completion support in the msfconsole interface; msfconsole is the preferred Ul
for everyday use. If SSL support is desired, you should install the Net::SSLeay
Perl module as well, this can also be found in the 'extras' subdirectory.

To perform a system-wide installation, we recommend that you copy the entire
Framework directory into a globally accessible location (/usr/local/share/msf) and
then create symbolic links from the msf* applications to a directory in the system
path (/usr/local/bin).

Installation on Windows

After months of working around ActiveState bugs, we finally decided to scrap it
and only support Cygwin Perl. The Metasploit Framework Win32 installer
bundles a stripped-down copy of the Cygwin environment, this is the preferred
way to use the Framework on the Windows platform. If you would like to install
the Framework into an existing Cygwin environment, please refer to the file
'docs/QUICKSTART.cygwin' in the installation directory; there are a number of
issues with installing the Term::ReadLine::Gnu and Net::SSLeay modules that
require jumping through hoops to solve.

Platform Caveats

While we have tried to support as many platforms as possible, there are some
compatibility bugs that have cropped up. One of the most annoying ones is a
bug in the version of Internet Explorer shipped with Mac OS X. For some reason
the browsers refuses to display web pages until the connection has closed or all
data has finished loading. This prevents the msfweb user interface from working
correctly with Internet Explorer. This issue can be worked around by using a
different browser, such as a Safari or Mozilla.

Copyright © METASPLOIT.COM 2003, 2004



Getting Started

The Console Interface

After you have installed the Framework, you should verify that everything is
working correctly. The quickest way to do this is to execute the msfconsole user
interface. This interface should display an ASCIl Metasploit logo, print the
current version, number of payloads, number of exploits, and drop to a 'msf'
prompt. From this prompt, type help to get a list of valid commands. You are
currently in the 'main' mode; this allows you to list exploits, list payloads, and
configure global options. To list all available exploits, type show exploits. To
obtain more information about a given exploit, type info exploit module_name.

Console Efficiency

The console has been designed with efficiency in mind and be used as a
standard shell in many situations. If you enter an unknown command, the
console will scan your PATH environment to determine if you typed a system
command. If it finds a match, that command will be executed with the supplied
arguments. This allows you to use your standard set of tools without having to
leave the console. Tab completion defaults to file-name matching when the
command entered is not an internal console command. This allows you to
navigate the file system normally, similar to using a bash shell.

Selecting an Exploit

From the msf prompt, you can choose an exploit with the use command. This
command takes the name of the exploit module as the first argument, enters
exploit mode, and loads the Temporary environment for that exploit. You can
switch between active exploits with the use command and drop back to the main
shell with the back command.

Exploit Basics

After selecting an exploit, your available command selection changes. Enter the
help command again to get an idea of what is available. The show command
now has a completely different set of arguments, these allow you to view the
standard options, advanced options, exploit targets, and compatible payloads.
The check command invokes the vulnerability check mode of the selected
exploit. The exploit command actually launches the selected exploit.

Copyright © METASPLOIT.COM 2003, 2004



Environments

The environment system is a core component of the Framework; the interfaces
use it to configure various options, the payloads use it generate the resulting
opcodes, the exploits use it to define parameters, and it is used internally to pass
options between disparate modules. The environment system is logically divided
into a Global and Temporary environment. Each exploit maintains its own
Temporary environment, which overrides the Global environment. When you
select an exploit via the 'use' command, the Temporary environment for that
exploit is loaded and the previous one is saved off. If you switch back to the
previous exploit, the Temporary environment for that exploit is loaded again.

Global Environment

The Global environment is accessed through the console via the "g" family of
functions (setg, unsetg). The following example is the Global environment state
after a fresh installation. Calling setg with no arguments displays the current
global environment, calling unsetg with no arguments will clear the entire global
environment. Default settings are automatically loaded when the interface starts.

+ -- --=[ msfconsole v2.0 [22 exploits - 30 payloads]

msf > setg

DebugLevel: 0

Encoder: Msf::Encoder::PexFnstenvMov
Logging: Disabled

Nop: Msf::Nop::Pex

msf >

Copyright © METASPLOIT.COM 2003, 2004



Temporary Environment

The Temporary environment in only available in exploit mode (via use
exploitname). Every exploit module has its own separate Temporary
environment and this environment will be saved when moving between different
exploit modules. The save command can be used to synchronize the Global and
all Temporary environments to disk, where they will be loaded as defaults next
time the interface starts.

The following example shows how the use command selects an active exploit
and how the back command reverts to the main mode.

msf > use apache_chunked_win32
msf apache_chunked_win32 > set
msf apache_chunked win32 > set FOO BAR
FOO -> BAR

msf apache_chunked_win32 > set
FOO: BAR

msf apache_chunked_win32 > back
msf > use poptop_negative_read
msf poptop_negative_read > set
msf poptop_negative_read > back
msf > use apache_chunked_win32
msf apache_chunked_win32 > set
FOO: BAR

msf apache_chunked_win32 >

Copyright © METASPLOIT.COM 2003, 2004



Using the Environments Effectively

This split environment system allows you save time during exploit development
and penetration testing. Common options between exploits can be defined in the

Global environment once and automatically used in any exploit you load

thereafter.

The example below shows how the LPORT, LHOST, and PAYLOAD global
environments can be used to save time when exploiting a set of Windows-based
targets. If this environment was set and a Linux exploit was being used, the
Temporary environment (via set and unset) could be used to override these

defaults.

msf > setg LPORT 12344

LPORT -> 12344

msf > setg LHOST 192.168.0.10

LHOST -> 192.168.0.10

msf > setg PAYLOAD winreverse
PAYLOAD -> winreverse

msf > use apache_chunked_win32

msf apache_chunked win32 > show options

Exploit and Payload Options

Exploit: Name  Default Description

optional SSL Use SSL

required RHOST The target address

optional PAD Specify the exact pad value

required RPORT 80 The target port

Payload: Name Default Description

optional EXITFUNC seh Exit technique: "process", "thread", "seh"
required LHOST 192.168.0.10 Local address to receive connection
required LPORT 12344 Local port to receive connection

Copyright © METASPLOIT.COM 2003, 2004



Advanced Environment Settings

The environment allow you to control aspects of the user interface, logging
options, and the behavior of certain routines. Many components of the
Framework can be controlled through environment settings, some examples of
these are below. Please note the environment name can change, depending on
whether the option is being set in the Global or Temporary environment. Many of
the module-specific options require the full module name to specified when set in
the Global environment.

Global Name: DebuglLevel
Temporary Name: DebuglLevel

Description: This option tells the Framework and Modules how
verbose their output should be, increasing the
DebuglLevel gives you more detailed information
about whats going on under the hood. Supported
values of DebuglLevel range from 0 to 5.

Global Name: Encoder
Temporary Name: Encoder

Description: This option allows you to specify the exact order in
which the Encoder modules should be used. The
default configuration is to cycle through these until
one is capable of encoding the payload correctly, this
option can be used to change the precedence. The
value should be a comma-separated list of encoder
names.

Global Name: Nop
Temporary Name: Nop

Description: This has the same behavior as the Encoder entry
above, except it is used to specify the preferred nop
generator module.

Copyright © METASPLOIT.COM 2003, 2004



Global Name:
Temporary Name:
Description:

Global Name:
Temporary Name:
Description:

Global Name:
Temporary Name:
Description:

Global Name:
Temporary Name:
Description:

Logging

Logging

If set to a non-zero value, this will enable session
logging. Session logs are stored in ~/.msflogs by
default, the directory can be changed used the LogDir
environment variable. You can use the msflogdump
utility to view the generated session logs. These logs
contain the complete environment for the exploit as
well as per-packet timestamps.

LogDir
LogDir

This option specifies what directory the log files should
be stored in. It defaults to ~/.msflogs.

Msf::Socket::ConnectTimeout
ConnectTimeout

This option allows you to specify the connect timeout
for TCP sockets. This value defaults to 10 and may
need to be increased to exploit systems across slow
links.

Msf::Socket::RecvTimeout
RecvTimeout

This option specifies the maximum number of
seconds allowed for socket reads that specified the
special length value of -1. This may need to be
increased if you are exploiting systems over a slow
link and running into problems.

Copyright © METASPLOIT.COM 2003, 2004



Global Name:
Temporary Name:
Description:

Global Name:
Temporary Name:
Description:

Global Name:
Temporary Name:
Description:

Msf::Socket::RecvTimeoutLoop
RecvTimeoutLoop

This option specifies the maximum number of
seconds to wait for data on a socket before returning
it. Each time that data is received within this period,
the loop starts again. This may need to be increased if
you are exploiting systems over a slow link and
running into problems.

Msf::Socket::Proxies
Proxies

This environment variable forces all TCP sockets to
go through the specified proxy chain. The format of
the chain type:host:port for each proxy, separated by
commas. The 2.0 release includes support for socks4
and http proxy types.

Msf::Nop::Pex::RandomNops
RandomNops

This option is specific to the Pex nop generator, it
allows randomized nop sleds to be used instead of the
standard nop character. This may cause issues with
exploits that depend on registers to be set with
specific values. It should only be used after being
tested with the relative exploit.

Copyright © METASPLOIT.COM 2003, 2004



Using the Framework

Configuring an Exploit

Once you have selected an exploit, the first step is to determine what options it
requires. This can be accomplished with the show options command. Most
exploits use RHOST to specify the target address and RPORT to set the target
port. Use the set command to configure the appropriate values for all required
options. Once this is complete, you can try the check command to determine if
the remote host is vulnerable. Not all exploits have a vulnerability check routine,
others return a response and expect you to analyze it before proceeding.

Selecting the Payload

Now that the exploit options have been set, you need to choose a payload. The
payload is the actual code which will run on the target system after a successful
exploit attempt. Use the show payloads command to list all payloads
compatible with the current exploit. If you are behind a firewall, you may want to
use a bind shell payload, if your target is behind one and you are not, you would
use a reverse connect payload. You can use info payload payload_name to get
more information about a given payload.

Once you have decided on a payload, use the set command to specify the
PAYLOAD environment variable. Once the payload has been set, use the show
options command to display all available payload options. Most payloads
require at least one option to be set for them to function.

Launching the Exploit

After the exploit and payload options have been set, you may need to configure
the exploit target. If a default target is not set, the exploit command will return an
error. You can use the show targets command to list all available targets and
then the set command to specify a value for the TARGET environment variable.
Once an appropriate target has been selected, you can use the exploit
command to attack the remote host. If everything went well, your payload will
execute and potentially drop you to a command shell in the console.

Copyright © METASPLOIT.COM 2003, 2004



The Command Line Interface

If the console is overkill for your needs, you may want to try the msfcli interface.
This interface takes a match string as the first parameter, followed by the options
in a VAR=VAL format, and finally an action code to specify what should be done.
The match string is compared against the available exploits, in the case that
more than one is found, it provides a list.

The action code is a single letter; S for summary, O for options, A for advanced
options, P for payloads, T for targets, C to try a vulnerability checks, and E to
exploit. The saved environment will be loaded and used at startup, this allows
you to configure various default options in the Global environment of msfconsole,
save them, and take advantage of the in the msfcli interface.

The command line interface is well suited for automated exploitation and batch
testing, combined with a custom payload and an intelligent scanner, it could be
ruthless :)

The Web Interface

The msfweb interface is a functional web server that allows you launch attacks
from your web browser. This interface is still very primitive, but might be useful
for users working in a team environment (pen-testing, etc). The connection to the
exploited host is proxied to a random listening port on the web server and the
user is given a telnet protocol link to this dynamically created listener.

Be aware that this interface has no security measures in place, anyone on the
network may connect to this web server or the dynamically selected proxy port.
The default configuration is to listen on the loopback address only, this can be
changed by passing the -a option with a value consisting of address:port. Just
like the command line interface, the saved environment is loaded on startup and
can affect module settings.

Copyright © METASPLOIT.COM 2003, 2004



Advanced Features

This section covers some of the advanced features that can be found in this
release. These features can be used in any compatible exploit and highlight the
strength of developing attack code using an exploit framework.

InlineEgg Python Payloads

InlineEgg is a library for assembly programs using the Python scripting language,
the more common use of this library is create advanced exploit payloads. The
Framework supports InlineEgg payload through the ExternalPayload module
interface; this allows transparent support if the Python scripting language is
installed.

This release includes InlineEgg examples for Linux, BSD, and Windows. The
Linux examples are linx86reverse _ie, linux86reverse_bind, and
linux86reverse_xor. These payloads can be used in the exact same way as any
other; however the contents are dynamically generated by the Python scripts
found the payloads/external subdirectory. The BSD examples work in the exact
same way, as long as Python is installed, they should be available.

The Windows InlineEgg example is named win32reverse_stg_ie and works in a
slightly different fashion. This payload has an option named IEGG, this option
specifies the path to the InlineEgg Python script that contains your final payload.
This is a staged payload; the first stage is a standard reverse connect payload,
the second stage sends the address of GetProcAddress and LoadLibraryA over
the connection, and the third stage is generated locally and sent across the
network. An example InlineEgg script is included in the payloads/external
subdirectory, called 'win32_stg_winexec.py'. For more information about
InlineEgg, please see Gera's web site, located at:

http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html

Copyright © METASPLOIT.COM 2003, 2004



Impurity ELF Injection

Impurity was a concept developed by Alexander Cuttergo that outlined a method
of executing an ELF image in-memory. This technique allows for arbitrarily
complex payloads to be written in standard C, the only requirement is a special
loader payload. The Framework includes a Linux loader for Impurity executables,
the payload is named linx86reverse_imp and requires the PEXEC option to be
set to the path of the executable. Impurity executables must be compiled in a
specific way, please see the documentation in the impurity subdirectory for more
information about this process. The included “shelldemo” application allows you
to list, access, read, write and open file handles in the exploited process. The
original mailing list post is archived online at:

http://archives.neohapsis.com/archives/vuln-dev/2003-g4/0006.html

Chainable Proxies

The Framework includes transparent support for TCP proxies, this release has
handler routines for HTTP CONNECT and SOCKSv4 servers. To use a proxy
with a given exploit, the Msf::Socket::Proxies Global environment variable needs
to be set. The value of this variable is a comma-separated list of proxy servers,
where each server is in the format type:host:port. The type values are 'http' for
HTTP CONNECT and 'socks4' for SOCKS v4. The proxy chain can be of any
length; testing shows that the system was stable with over five hundred SOCKS
and HTTP proxies configured randomly in a chain. The proxy chain only masks
the exploit request, the automatic connection to the payload is not relayed
through the proxy chain at this time.

UploadExec Payloads

Although Unix systems normally include all of the tools you need post-
exploitation, Windows systems are notoriously lacking in a decent command line
tool kit. The UploadExec payloads included in this release allow you to
simultaneously exploit a system, upload your favorite tool, and execute it, all
across the payload socket connection. When combined with a self-extracting
rootkit or scripting language interpreter (perl.exe!), this can be a very powerful
feature.

Copyright © METASPLOIT.COM 2003, 2004



More Information

Web Site

The metasploit.com web site is the first place to check for updated modules and
new releases. This web site also hosts the Opcode Database and a decent
Windows shellcode archive.

Mailing List

You can subscribe to the Metasploit Framework mailing list by sending a blank
email to framework-subscribe [at] metasploit.com. This is the preferred way to
submit bugs, suggest new features, and discuss the Framework with other users.

Developers

If you would like to get involved in the development of the next version of the
Framework, please contact the developers. They can be reached at: msfdev [at]
metasploit.com.

Copyright © METASPLOIT.COM 2003, 2004



